Skip to main content

Effective Thermal Conductivity of Transversely Isotropic Materials with Concave Pores

  • Chapter
  • First Online:
Advances in Linear and Nonlinear Continuum and Structural Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 198))

  • 144 Accesses

Abstract

The aim of this paper is to extend recent elastic work to thermal problem. In the first part of the paper, approximate relations for the resistivity contribution tensor of pores of two reference shapes, supersphere and axisymmetrical superspheroid, are developed on the basis of 3D Finite Element Modelling, presented in the companion paper, and known exact solutions for the limiting cases of spherical pores. In the second part application to effective elastic coefficients of transversely isotropic materials such as clay rocks, in the frame of homogenization theory, is presented to illustrate the impact of concavity parameter on overall properties.

Igor Sevostianov is deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barthélémy JF (2008) Effective permeability of media with a dense network of long and micro fractures. Transport in Porous Media 76(1):153–178

    Article  MathSciNet  Google Scholar 

  • Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mechanics of Materials 6(2):147–157

    Article  Google Scholar 

  • Buchner T, Kiefer T, Königsberger M, Jäger A, Füssl J (2021) Continuum micromechanics model for fired clay bricks: Upscaling of experimentally identified microstructural features to macroscopic elastic stiffness and thermal conductivity. Materials and Design 212:110212

    Article  Google Scholar 

  • Chen F, Sevostianov I, Giraud A, Grgic D (2015) Evaluation of the effective elastic and conductive properties of a material containing concave pores. International Journal of Engineering Science 97:60–68

    Article  MathSciNet  Google Scholar 

  • Chen F, Sevostianov I, Giraud A, Grgic D (2017) Accuracy of the replacement relations for materials with non-ellipsoidal inhomogeneities. International Journal of Solids and Structures 104–105:73–80

    Article  Google Scholar 

  • Du, K., Cheng, L., Barthélémy, J.F., Sevostianov, I., Giraud, A., Adessina, A.: Numerical estimation of resistivity contribution tensor of a concave pore embedded in a transversely isotropic matrix. In: Altenbach, H., Bruno, G., Eremeyev, V., Gutkin, M., Müller, W. (eds.) Mechanics of Heterogeneous Materials, pp. 1–25. Book series Advanced Structured Materials. Springer, ??? (2022)

    Google Scholar 

  • Du K, Cheng L, Barthélémy JF, Sevostianov I, Giraud A, Adessina A (2020) Numerical computation of compliance contribution tensor of a concave pore embedded in a transversely isotropic matrix. International Journal of Engineering Science 152:103306

    Article  MathSciNet  Google Scholar 

  • Du K, Cheng L, Barthélémy JF, Sevostianov I, Giraud A, Adessina A (2021) Effective elastic properties of transversely isotropic materials with concave pores. Mechanics of Materials 153:103665

    Article  Google Scholar 

  • Eshelby, J.D.: Elastic inclusions and inhomogeneities. In: Progress in Solid Mechanics 2, I.N. Sneddon and R. Hill Editors, pp. 89–140. North-Holland, Amsterdam, ??? (1961)

    Google Scholar 

  • Giraud A, Gruescu C, Do DP, Homand F, Kondo D (2007) Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoıdal inhomogeneities. International Journal of Solids and Structures 44(11):2627–2647

    Article  Google Scholar 

  • Giraud A, Hoxha D, Huynh QV, Do DP, Magnenet V (2008) Effective porothermoelastic properties of transversely isotropic rock-like composites. International Journal of Engineering Science 46:527–550

    Article  MathSciNet  Google Scholar 

  • Giraud A, Sevostianov I, Chen F, Grgic D (2015) Effective thermal conductivity of oolitic rocks using the Maxwell homogenization method. International Journal of Rock Mechanics and Mining Sciences 80:379–387

    Article  Google Scholar 

  • Giraud A, Sevostianov I, Kushch VI, Cosenza P, Prêt D, Barthélémy JF, Trofimov A (2019) Effective electrical conductivity of transversely isotropic rocks with arbitrarily oriented ellipsoidal inclusions. Mechanics of Materials 133:174–192

    Article  Google Scholar 

  • Kachanov, M., Sevostianov, I.: Micromechanics of Materials, with Applications. Solid Mechanics and Its Applications, vol. 249. Springer, ??? (2018)

    Google Scholar 

  • Kiefer T, Füssl J, Kariem H, Konnerth J, Gaggl W, Hellmich C (2020) A multi-scale material model for the estimation of the transversely isotropic thermal conductivity tensor of fired clay bricks. Journal of the European Ceramic Society 40(15):6200–6217

    Article  Google Scholar 

  • Kushch, V.: Micromechanics of Composites. Multipole Expansion Approach. Elsevier, ??? (2013)

    Google Scholar 

  • Kushch VI, Sevostianov I (2014) Dipole moments, property contribution tensors and effective conductivity of anisotropic particulate composites. International Journal of Engineering Science 74:15–34

    Article  Google Scholar 

  • Kushch VI, Sevostianov I, Giraud A (2017) Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents. Proceedings of the Royal Society A. 473(1):53–77

    MathSciNet  Google Scholar 

  • Markov A, Trofimov A, Sevostianov I (2020) A unified methodology for calculation of compliance and stiffness contribution tensors of inhomogeneities of arbitrary 2d and 3d shapes embedded in isotropic matrix - open access software. International Journal of Engineering Science 157:103390

    Article  MathSciNet  Google Scholar 

  • Meynard, J., Ibrahim, M., Monnier, A., Bornert, M., Castelier, E., Duguay, C., Gărăjeu, M., Masson, R.: Effective properties of an isotropic solid weakened by micro-cracks located at inter-granular boundaries. Journal of the Mechanics and Physics of Solids 158, 104647 (2022)

    Google Scholar 

  • Meynard, J.: Influence de la taille, de la morphologie et de la distribution spatiale des pores sur la conductivité thermique de céramiques UO2 (in french), Effect of pore size, morphology and spatial distribution on the thermal conductivity of UO2 ceramics. PhD thesis, Aix-Marseille Université, Marseille (France) (2019)

    Google Scholar 

  • Sevostianov I (2014) On the shape of effective inclusion in the Maxwell homogenization scheme for anisotropic elastic composites. Mechanics of Materials 75:45–59

    Article  Google Scholar 

  • Sevostianov I, Chen F, Giraud A, Grgic D (2016) Compliance and resistivity contribution tensors of axisymmetric concave pores. International Journal of Engineering Science 101:14–28

    Article  Google Scholar 

  • Sevostianov I, Mogilevskaya SG, Kushch VI (2019) Maxwell’s methodology of estimating effective properties: Alive and well. International Journal of Engineering Science 140:35–88

    Article  MathSciNet  Google Scholar 

  • Tian, Z., Abou-Chakra, A., Geoffroy, S., Kondo, D.: The effective elastic properties and thermal conductivity of porous fired clay bricks. European Journal of Environmental and Civil Engineering 0(0), 1–15 (2019)

    Google Scholar 

  • Trofimov A, Markov A, Abaimov SG, Akhatov I, Sevostianov I (2018) Overall elastic properties of a material containing inhomogeneities of concave shape. International Journal of Engineering Science 132:30–44

    Article  MathSciNet  Google Scholar 

  • Wu TT (1966) The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures 2(1):1–8

    Article  Google Scholar 

Download references

Acknowledgements

This paper puts an end to a work carried out in collaboration with our late friend, Professor Igor Sevostianov, and is dedicated to his memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Giraud .

Editor information

Editors and Affiliations

Appendices

Appendix A Background on Property Contribution Tensors

Property contribution tensors are used in micromechanics to describe the contribution of a single inhomogeneity to the property of interest (Kachanov and Sevostianov 2018). The average strain, over representative volume \(\mid \Omega \mid \), can be represented as a sum

$$\begin{aligned} \underline{\varepsilon }{} = {\textbf{r}}_{0} : \underline{\Sigma }{} + \Delta \underline{\varepsilon }{} \end{aligned}$$
(A1)

where \({\textbf{r}}_{0} \) where is the resistivity tensor of the matrix and \(\underline{\Sigma }{}\) is uniform remotely applied heat flux vector. The material is assumed to be linear; hence, the extra thermal gradient \(\Delta \underline{\varepsilon }{}\) due to presence of an inhomogeneity \(\mathcal {E}\) is a linear function of the applied heat flux vector

$$\begin{aligned} \Delta \underline{\varepsilon }{} = f\, {\textbf{H}}_{0}^{\mathcal {E}} : \underline{\Sigma }{} , \quad \text {with } f = \frac{\mid \mathcal {E} \mid }{\mid \Omega \mid } \end{aligned}$$
(A2)

where \(\mid \mathcal {E} \mid \) is the pore volume and \({\textbf{H}}_{0}^{\mathcal {E}}\) is second-rank resistivity contribution tensor of the pore. The \({\textbf{H}}_{0}^{\mathcal {E}}\) tensor is determined by the shape and size of the inhomogeneity, as well as properties of the matrix and of the inhomogeneity material. This tensor is also affected by conductive interactions. In the non-interaction approximation, it is taken by treating the inhomogeneities as isolated ones. In the case of multiple inhomogeneities, the extra strain produced by m-th inhomogeneity is \(\Delta \underline{\varepsilon }{}^{(m)} = {f}^{(m)}\, {\textbf{H}}_{0}^{\mathcal {E}(m)} : \underline{\Sigma }{}\) so that the extra thermal resistivity due to all the inhomogeneities is given by

$$\begin{aligned} \Delta \underline{\varepsilon }{} = \left[ \sum {f}^{(m)}\, {\textbf{H}}_{0}^{\mathcal {E}(m)}\right] : \underline{\Sigma }{} \end{aligned}$$
(A3)

Formula (A3) highlights the fundamental importance of the resistivity contribution tensors: these tensors have to be summed up and averaged in the context of the effective conductive properties. The sum

$$\begin{aligned} \sum {f}^{(m)}\, {\textbf{H}}_{0}^{\mathcal {E}(m)} \end{aligned}$$
(A4)

properly reflects compliance contributions of individual inhomogeneities and constitutes the general microstructural parameters in whose terms the effective compliance should be expressed. The conductivity contribution tensor denoted respectively by \({\textbf{N}}_{0}^{\mathcal {E}}\) allows to calculate the extra heat flux vector induced by the presence of the inhomogeneity in a dilute situation such that

$$\begin{aligned} \Delta \underline{\sigma }= - f\,{\textbf{N}}_{0}^{\mathcal {E}} \cdot \underline{E}{} \end{aligned}$$
(A5)

where \(\underline{E}{}\) is the remotely applied thermal gradient vector. We recall that the average concentration tensors \({\textbf{A}}_{0}^{\mathcal {E}}\) and \({\textbf{B}}_{0}^{\mathcal {E}}\) are defined as

$$\begin{aligned} {\left\langle {\underline{\varepsilon }{}}\right\rangle }^{\mathcal {E}} = {\textbf{A}}_{0}^{\mathcal {E}} \cdot \underline{E}{} , \quad {\left\langle {\underline{\sigma }{}}\right\rangle }^{\mathcal {E}} = - {\textbf{B}}_{0}^{\mathcal {E}} \cdot \underline{E}{} \end{aligned}$$
(A6)

with

$$\begin{aligned} {\textbf{A}}_{0}^{\mathcal {E}} = {\left( {\boldsymbol{\lambda }}_{\mathcal {E}} - {\boldsymbol{\lambda }}_{0}\right) }^{-1} \cdot {\textbf{N}}_{0}^{\mathcal {E}} , \quad {\textbf{B}}_{0}^{\mathcal {E}} = {\boldsymbol{\lambda }}_{\mathcal {E}} \cdot {\textbf{A}}_{0}^{\mathcal {E}} \end{aligned}$$
(A7)

In the general case of non-ellipsoidal shapes, contribution and concentration tensors related to an inhomogeneity need to be calculated numerically. \({\textbf{H}}_{0}^{\mathcal {E}}\) and \({\textbf{N}}_{0}^{\mathcal {E}}\) can be interrelated as

$$\begin{aligned} {\textbf{H}}_{0}^{\mathcal {E}}= - {\textbf{r}}_{0} \cdot {\textbf{N}}_{0}^{\mathcal {E}} \cdot {\textbf{r}}_{0} , \quad {\textbf{N}}_{0}^{\mathcal {E}} = - {\boldsymbol{\lambda }}_{0} \cdot {\textbf{H}}_{0}^{\mathcal {E}} \cdot {\boldsymbol{\lambda }}_{0} \end{aligned}$$
(A8)

In the case of a homogeneous inhomogeneity one has

$$\begin{aligned} {\textbf{A}}_{0}^{\mathcal {E}} = {\left( {\boldsymbol{\lambda }}_{\mathcal {E}} - {\boldsymbol{\lambda }}_{0}\right) }^{-1} \cdot {\textbf{N}}_{0}^{\mathcal {E}} , \quad {\textbf{B}}_{0}^{\mathcal {E}} = {\boldsymbol{\lambda }}_{\mathcal {E}} \cdot {\textbf{A}}_{0}^{\mathcal {E}} \end{aligned}$$
(A9)

6.1.1 Appendix A.1 Case of an Ellipsoidal Homogeneous Inhomogeneity

The ellipsoidal homogeneous inhomogeneity is of particular interest in the present since analytical expressions of contribution and concentration tensors are available and can then further be compared to the numerical ones to validate the methodology presented to calculate property contribution tensors and concentration tensors. In the particular case of an ellipsoidal inhomogeneity \(\mathcal {E}\) embedded in an infinite matrix 0 of conductivity \({\boldsymbol{\lambda }}_{0}\) and resistivity \({\textbf{r}}_{0}\) tensors, resistivity \({\textbf{H}}_{0}^{\mathcal {E}} \) and conductivity \({\textbf{N}}_{0}^{\mathcal {E}} \) contribution tensors write (see Kachanov and Sevostianov 2018 for details):

$$\begin{aligned} \begin{array}{l}{{\textbf{H}}_{0}^{\mathcal {E}} ={\left[ {\left( {\textbf{r}}_{\mathcal {E}}-{\textbf{r}}_{0}\right) }^{-1}+{\textbf{Q}}_{0}^{\mathcal {E}}\right] }^{-1}}, \quad {\textbf{N}}_{0}^{\mathcal {E}}={\left[ {{\left( {\boldsymbol{\lambda }}_{\mathcal {E}}-{\boldsymbol{\lambda }}_{0}\right) }^{-1}+{\textbf{P}}_{0}^{\mathcal {E}}}\right] }^{-1}\end{array} \end{aligned}$$
(A10)

where \({\textbf{P}}_{0}^{\mathcal {E}}\) and \({\textbf{Q}}_{0}^{\mathcal {E}}\) denote the second order Hill’s tensors of the inhomogeneity. Thermal gradient concentration tensor of the ellipsoidal inhomogeneity writes

$$\begin{aligned} {\textbf{A}}_{0}^{\mathcal {E}} = \left[ \textbf{i} + {\textbf{P}}_{0}^{\mathcal {E}} : \left( {\boldsymbol{\lambda }}_{\mathcal {E}} - {\boldsymbol{\lambda }}_{0} \right) \right] ^{-1} \end{aligned}$$
(A11)

The Hill polarization tensor and resistivity contribution tensor of a spheroidal inclusion aligned in a transversely isotropic host matrix is detailed below. See Giraud et al. (2019), Barthélémy (2008) for the complete solution of arbitrarily oriented ellipsoidal inhomogeneity embedded in an orthotropic matrix. One considers a transversely isotropic matrix of conductivity tensor \(\boldsymbol{{\lambda }}_{0}\) (\(\underline{n}{}\) denotes unit vector on the symmetry axis, in this paper \(\underline{n}{} = \underline{e}{}_{3}\))

$$\begin{aligned} \boldsymbol{{\lambda }}_{0} = {\lambda }_{0} \left( {\nu }^{2}\,{\textbf{i}}_{T} + {\textbf{i}}_{N}\right) , \quad {\textbf{i}}_{N} = \underline{n} \otimes \underline{n} , \quad {\textbf{i}}_{T} = \textbf{i} - {\textbf{i}}_{N} \end{aligned}$$
(A12)

The Hill polarization tensor \({\textbf{P}}_{0}^{\mathcal {E}}\) of a spheroidal inclusion aligned in the directions of a transversely isotropic matrix (spheroid and matrix have the same symmetry axis) writes

$$\begin{aligned} {\textbf{P}}_{0}^{\mathcal {E}}=\frac{g(\nu \gamma )}{{\nu }^{2} {\lambda }_{0}} {\textbf{i}}_{T} + \frac{1 - 2\,g(\nu \gamma )}{{\lambda }_{0}} {\textbf{i}}_{N} \end{aligned}$$
(A13)

with shape function \(g(\xi )\) (see Barthélémy 2008; Giraud et al. 2019)

(A14)

Resistivity contribution tensor \({\textbf{H}}_{0}^{\mathcal {E}}\) of an insulating \({\boldsymbol{\lambda }}_{\mathcal {E}} = \textbf{0}\) aligned spheroidal pore writes

$$\begin{aligned} {\textbf{H}}_{0}^{\mathcal {E}}=\frac{1}{{\nu }^{2} {\lambda }_{0}\left( 1 - g(\nu \gamma )\right) } {\textbf{i}}_{T} + \frac{1}{2\,{\lambda }_{0}\, g(\nu \gamma )} {\textbf{i}}_{N} \end{aligned}$$
(A15)

and the limiting case of the spherical pore \(\gamma = 1\) embedded in an isotropic matrix \(\nu = 1\) is recovered

$$\begin{aligned} {\textbf{H}}_{0}^{\mathcal {E}}=\frac{3}{2 {\lambda }_{0}} \textbf{i} \end{aligned}$$
(A16)

Resistivity contribution tensor of an aligned penny shaped crack embedded in a TI matrix writes

$$\begin{aligned} {\textbf{H}}_{0}^{\mathcal {E}}=\frac{2}{\pi \,{\lambda }_{0}\,\nu } {\textbf{i}}_{N} \end{aligned}$$
(A17)

Appendix B Numerical Results for Approximation Formula of Resistivity Contribution Tensors

Finite element results of a superspherical pore embedded in a TI matrix are given in table 4 of paper Du et al. (2020), and recalled in Table B1.

Table B1 Coefficients of piecewise functions \(f_{11}^{\text {se}}\) and \(f_{33}^{\text {se}}\) of superspherical pore

Finite element results of an axisymmetrical superspheroidal pore embedded in a TI matrix are given in table 3 of paper Du et al. (2020) and recalled in Table B2.

Table B2 Coefficients of piecewise functions \(f_{11}^{\text {so}}\) and \(f_{33}^{\text {so}}\) of axisymmetrical superspheroidal pore

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, K., Cheng, L., Barthélémy, JF., Sevostianov, I., Giraud, A., Adessina, A. (2023). Effective Thermal Conductivity of Transversely Isotropic Materials with Concave Pores. In: Altenbach, H., Eremeyev, V. (eds) Advances in Linear and Nonlinear Continuum and Structural Mechanics. Advanced Structured Materials, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-031-43210-1_6

Download citation

Publish with us

Policies and ethics