Skip to main content

Advances in Mass Spectrometry-Metabolomics Based Approaches

  • Chapter
  • First Online:
Microbial Natural Products Chemistry

Abstract

Highly selective and sensitive analytical techniques are necessary for microbial metabolomics due to the complexity of the microbial sample matrix. Hence, mass spectrometry (MS) has been successfully applied in microbial metabolomics due to its high precision, versatility, sensitivity, and wide dynamic range. The different analytical tools using MS have been employed in microbial metabolomics investigations and can contribute to the discovery or accelerate the search for bioactive substances. The coupling with chromatographic and electrophoretic separation techniques has resulted in more efficient technologies for the analysis of microbial compounds occurring in trace levels. This book chapter describes the current advances in the application of mass spectrometry-based metabolomics in the search for new biologically active agents from microbial sources; the development of new approaches for in silico annotation of natural products; the different technologies employing mass spectrometry imaging to deliver more comprehensive analysis and elucidate the metabolome involved in ecological interactions as they enable visualization of the spatial dispersion of small molecules. We also describe other ambient ionization techniques applied to the fingerprint of microbial natural products and modern techniques such as ion mobility mass spectrometry used to microbial metabolomic analyses and the dereplication of natural microbial products through MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso A, Marsal S, Julià A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotech 3:23

    Google Scholar 

  2. Aksenov AA, da Silva R, Knight R, Lopes NP, Dorrestein PC (2017) Global chemical analysis of biology by mass spectrometry. Nat Rev Chem 1(7):1–20

    Article  Google Scholar 

  3. Alexandrov T (2020) Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. Ann Rev Biomed Data Sci 3:61–87

    Article  Google Scholar 

  4. Bader CD, Haack PA, Panter F, Krug D, Müller R (2021) Expanding the scope of detectable microbial natural products by complementary analytical methods and cultivation systems. J Nat Prod 84(2):268–277

    Article  CAS  PubMed  Google Scholar 

  5. Baidoo EE, Benke PI, Keasling JD (2012) Mass spectrometry-based microbial metabolomics. In: Microbial systems biology. Humana Press, Totowa, pp 215–278

    Chapter  Google Scholar 

  6. Balog J, Kumar S, Alexander J, Golf O, Huang J, Wiggins T, Abbassi-Ghadi N, Enyedi A, Kacska S, Kinross J, Hanna GB, Nicholson JK, Takats Z (2015) In vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). Angew Chem 127(38):11211–11214

    Article  Google Scholar 

  7. Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC (2022) Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol 20:143–160

    Article  CAS  PubMed  Google Scholar 

  8. Bean HD, Dimandja JMD, Hill JE (2012) Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J Chromatogr B 901:41–46

    Article  CAS  Google Scholar 

  9. Beniddir MA, Kang KB, Genta-Jouve G, Huber F, Rogers S, Van Der Hooft JJ (2021) Advances in decomposing complex metabolite mixtures using substructure-and network-based computational metabolomics approaches. Nat Prod Rep 38(11):1967–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blaženović I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8(2):31

    Article  PubMed  PubMed Central  Google Scholar 

  11. Borges RM, Resende JVM (2021) (DES) Construindo a metabolômica em produtos naturais: Um convite a discussão. Química Nova 44:1392–1394

    CAS  Google Scholar 

  12. Bouslimani A, Sanchez LM, Garg N, Dorrestein PC (2014) Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep 31(6):718–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chamberlain CA, Hatch M, Garrett TJ (2021) Extracellular vesicle analysis by paper spray ionization mass spectrometry. Metabolites 11(5):308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Q, Wang L, Qi Y, Ma C (2020) Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist. Chemosphere 259:127430

    Article  CAS  PubMed  Google Scholar 

  15. Cody RB (2020) Saccharomyces cerevisiae and S. pastorianus species and strain differentiation by direct analysis in real time time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 34(17):e8835

    Article  CAS  PubMed  Google Scholar 

  16. Da Silva RR, Wang M, Nothias LF, van der Hooft JJJ, Caraballo-Rodríguez AM, Fox E, Balunas MJ, Klassen JL, Lopes NP, Dorrestein PC (2018) Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput Biol 14(4):1–26

    Article  Google Scholar 

  17. Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41(2):185–201

    Article  CAS  PubMed  Google Scholar 

  18. Demarque DP, Dusi RG, de Sousa FD, Grossi SM, Silvério MR, Lopes NP, Espindola LS (2020) Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci Rep 10(1):1–9

    Article  Google Scholar 

  19. Derewacz DK, Goodwin CR, McNees CR, McLean JA, Bachmann BO (2013) Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proc Natl Acad Sci 110(6):2336–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, Houk J et al (2022) Metabolomics approaches to Dereplicate natural products from coral-derived bioactive bacteria. J Nat Prod 85(3):462–478

    Article  CAS  PubMed  Google Scholar 

  21. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45(W1):W180–W188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dunham SJ, Ellis JF, Li B, Sweedler JV (2016) Mass spectrometry imaging of complex microbial communities. Acc Chem Res 50(1):96–104

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ernst M, Silva DB, Silva RR, Vêncio RZ, Lopes NP (2014) Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 31(6):784–806

    Article  CAS  PubMed  Google Scholar 

  24. Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias LF, Wandy J, Chen C, Wang M, Rogers S, Medema MH, Dorrestein PC, Van Der Hooft JJ (2019) MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9(7):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Esquenazi E, Daly M, Bahrainwala T, Gerwick WH, Dorrestein PC (2011) Ion mobility mass spectrometry enables the efficient detection and identification of halogenated natural products from cyanobacteria with minimal sample preparation. Bioorg Med Chem 19(22):6639–6644

    Article  CAS  PubMed  Google Scholar 

  26. Floros DJ, Petras D, Kapono CA, Melnik AV, Ling TJ, Knight R, Dorrestein PC (2017) Mass spectrometry based molecular 3D-cartography of plant metabolites. Front Plant Sci 8:429

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gao P, Xu G (2015) Mass-spectrometry-based microbial metabolomics: recent developments and applications. Anal Bioanal Chem 407(3):669–680

    Article  CAS  PubMed  Google Scholar 

  28. Geier B, Sogin EM, Michellod D, Janda M, Kompauer M, Spengler B, Dubilier N, Liebeke M (2020) Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat Microbiol 5(3):498–510

    Article  CAS  PubMed  Google Scholar 

  29. Genilloud O (2014) The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek 106(1):173–188

    Article  CAS  PubMed  Google Scholar 

  30. Ghaste M, Mistrik R, Shulaev V (2016) Applications of fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci 17(6):816

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goodwin CR, Fenn LS, Derewacz DK, Bachmann BO, McLean JA (2012) Structural mass spectrometry: rapid methods for separation and analysis of peptide natural products. J Nat Prod 75(1):48–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamid AM, Jarmusch AK, Pirro V, Pincus DH, Clay BG, Gervasi G, Cooks RG (2014) Rapid discrimination of bacteria by paper spray mass spectrometry. Anal Chem 86(15):7500–7507

    Article  CAS  PubMed  Google Scholar 

  33. Hamid AM, Wei P, Jarmusch AK, Pirro V, Cooks RG (2015) Discrimination of Candida species by paper spray mass spectrometry. Int J Mass Spect 378:288–293

    Google Scholar 

  34. Hirayama A, Wakayama M, Soga T (2014) Metabolome analysis based on capillary electrophoresis-mass spectrometry. TrAC Trends Anal Chem 61:215–222

    Article  CAS  Google Scholar 

  35. Hsu CC, ElNaggar MS, Peng Y, Fang J, Sanchez LM, Mascuch SJ, Møller KA, Alazzeh EK, Pikula J, Quinn RA, Zeng Y, Wolfe BE, Duttonγ RJ, Gerwick L, Zhang L, Liu X, Månsson M, Dorrestein PC (2013) Real-time metabolomics on living microorganisms using ambient electrospray ionization flow-probe. Anal Chem 85(15):7014–7018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ibáñez AJ, Fagerer SR, Schmidt AM, Urban PL, Jefimovs K, Geiger P, Dechant R, Heinemann M, Zenobi R (2013) Mass spectrometry-based metabolomics of single yeast cells. Proc Natl Acad Sci 110(22):8790–8794

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jarmusch AK, Cooks RG (2014) Emerging capabilities of mass spectrometry for natural products. Nat Prod Rep 31(6):730–738

    Article  CAS  PubMed  Google Scholar 

  38. Jarmusch SA, van der Hooft JJ, Dorrestein PC, Jarmusch AK (2021) Advancements in capturing and mining mass spectrometry data are transforming natural products research. Nat Prod Rep 38(11):2066–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35(5):620–649

    Article  CAS  PubMed  Google Scholar 

  40. Kang KB, Ernst M, van der Hooft JJ, da Silva RR, Park J, Medema MH, Sung SH, Dorrestein PC (2019) Comprehensive mass spectrometry-guided phenotyping of plant specialized metabolites reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae. Plant J 98(6):1134–1144

    Article  CAS  PubMed  Google Scholar 

  41. Kaufmann A, Butcher P, Maden K, Walker S, Widmer M (2020) Does the ion mobility resolving power as provided by commercially available ion mobility quadrupole time-of-flight mass spectrometry instruments permit the unambiguous identification of small molecules in complex matrices? Anal Chim Acta 1107:113–126

    Article  CAS  PubMed  Google Scholar 

  42. Kellogg JJ, Todd DA, Egan JM, Raja HA, Oberlies NH, Kvalheim OM, Cech NB (2016) Biochemometrics for natural products research: comparison of data analysis approaches and application to identification of bioactive compounds. J Nat Prod 79(2):376–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keppler EAH, Jenkins CL, Davis TJ, Bean HD (2018) Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. TrAC Trends Anal Chem 109:275–286

    Article  Google Scholar 

  44. Kim D, Yim UH, Kim B, Cha S, Kim S (2017) Paper spray chemical ionization: highly sensitive ambient ionization method for low-and nonpolar aromatic compounds. Anal Chem 89(17):9056–9061

    Article  CAS  PubMed  Google Scholar 

  45. Lanni EJ, Masyuko RN, Driscoll CM, Aerts JT, Shrout JD, Bohn PW, Sweedler JV (2014) MALDI-guided SIMS: multiscale imaging of metabolites in bacterial biofilms. Anal Chem 86(18):9139–9145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li H, Balan P, Vertes A (2016) Molecular imaging of growth, metabolism, and antibiotic inhibition in bacterial colonies by laser ablation electrospray ionization mass spectrometry. Angew Chem 128(48):15259–15263

    Article  Google Scholar 

  48. Liebeke M, Strittmatter N, Fearn S, Morgan AJ, Kille P, Fuchser J, Wallis D, Palchykov V, Robertson J, Lahive E, Spurgeon DJ, McPhail D, Takáts Z, Bundy JG (2015) Unique metabolites protect earthworms against plant polyphenols. Nat Commun 6(1):1–7

    Article  Google Scholar 

  49. Lima GS, Dos Santos GF, Ramalho RRF, de Aguiar DVA, Roque JV, Maciel LIL, Simas RC, Pereira I, Vaz BG (2022) Laser ablation electrospray ionization mass spectrometry imaging as a new tool for accessing patulin diffusion in mold-infected fruits. Food Chem 373:131490

    Article  Google Scholar 

  50. Lima NM, Lima GS, dos Santos GF, Preet G, Maciel LIL, Andrade TJAS, Jaspars M, Chaves AR, Vaz BG (2023) Assessing the effectiveness of chemical marker extraction from Amazonian plant Cupuassu (Theobroma grandiflorum) by PSI-HRMS/MS and LC-HRMS/MS. Metabolites 13:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ling C, Shi Q, Wei Z, Zhang J, Hu J, Pei J (2022) Rapid analysis of quinones in complex matrices by derivatization-based wooden-tip electrospray ionization mass spectrometry. Talanta 237:122912

    Article  CAS  PubMed  Google Scholar 

  52. Lukowski JK, Bhattacharjee A, Yannarell SM, Schwarz K, Shor LM, Shank EA, Anderton CR (2021) Expanding molecular coverage in mass spectrometry imaging of microbial systems using metal-assisted laser desorption/ionization. Microbiol Spectr 9(1):e00520-21

    Article  PubMed  PubMed Central  Google Scholar 

  53. Luzzatto-Knaan T, Melnik AV, Dorrestein PC (2015) Mass spectrometry tools and workflows for revealing microbial chemistry. Analyst 140(15):4949–4966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marshall AP, Johnson AR, Vega MM, Thomson RJ, Carlson EE (2020) Ion mobility mass spectrometry as an efficient tool for identification of Streptorubin B in Streptomyces coelicolor M145. J Nat Prod 83(1):159–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Masike K, Stander MA, de Villiers A (2021) Recent applications of ion mobility spectrometry in natural product research. J Pharm Biomed Anal 195:113846

    Article  CAS  PubMed  Google Scholar 

  56. Medema MH, Fischbach MA (2015) Computational approaches to natural product discovery. Nat Chem Biol 11(9):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Middlesworth FV, Cannell RJ (1998) Dereplication and partial identification of natural products. In: Natural products isolation. Humana Press, pp 279–327

    Chapter  Google Scholar 

  58. Misra BB (2020) The connection and disconnection between microbiome and metabolome: a critical appraisal in clinical research. Biol Res Nurs 22(4):561–576

    Article  PubMed  Google Scholar 

  59. Mohimani H, Gurevich A, Shlemov A, Mikheenko A, Korobeynikov A, Cao L, Shcherbin E, Nothias L-F, Dorrestein PC, Pevzner PA (2018) Dereplication of microbial metabolites through database search of mass spectra. Nat Commun 9(1):1–12

    Article  CAS  Google Scholar 

  60. Monton MRN, Soga T (2007) Metabolome analysis by capillary electrophoresis–mass spectrometry. J Chromatogr A 1168(1–2):237–246

    Article  CAS  PubMed  Google Scholar 

  61. Moore JL, Caprioli RM, Skaar EP (2014) Advanced mass spectrometry technologies for the study of microbial pathogenesis. Curr Opin Microbiol 19:45–51

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen DD, Saharuka V, Kovalev V, Stuart L, Del Prete M, Lubowiecka K, De Mot R, Venturi V, Alexandrov T (2021) Facilitating imaging mass spectrometry of microbial specialized metabolites with METASPACE. Metabolites 11(8):477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Panter F, Bader CD, Müller R (2021) Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chem Sci 12(17):5994–6010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patil SG, Patil MP, Maheshwari VL, Patil RH (2021) In situ probing of endophyte natural products with DESI-imaging mass spectrometry. In: Endophytes, pp 177–193. https://doi.org/10.1007/978-981-15-9371-0_9

    Chapter  Google Scholar 

  65. Pilon AC, Vieira NC, Amaral JG, Monteiro AF, Silva RRD, Spíndola LS, Gamboa IC, Lopes NP (2021) Redes moleculares: uma análise sobre anotações e descoberta de novos ativos. Química Nova 44(9):1168–1179

    CAS  Google Scholar 

  66. Prentice BM, Caprioli RM (2016) The need for speed in matrix-assisted laser desorption/ionization imaging mass spectrometry. Postdoc J 4(3):3

    PubMed  PubMed Central  Google Scholar 

  67. Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z, Belda-Ferre P, Tripathi A, Chung LK, Downes M, Welch RD, Quinn M, Humphrey G, Panitchpakdi M, Weldon KC, Aksenov A, da Silva R, Avila-Pacheco J, Clish C, Bae S, Mallick H, Franzosa EA, Lloyd-Price J, Bussell R, Thron T, Nelson AT, Wang M, Leszczynski E, Vargas F, Gauglitz JM, Meehan MJ, Gentry E, Arthur TD, Komor AC, Poulsen O, Boland BS, Chang JT, Sandborn WJ, Lim M, Garg N, Lumeng JC, Xavier RJ, Kazmierczak BI, Jain R, Egan M, Rhee KE, Ferguson D, Raffatellu M, Vlamakis H, Haddad GG, Siegel D, Huttenhower C, Mazmanian SK, Evans RM, Nizet V, Knight R, Dorrestein PC (2020) Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579(7797):123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rath CM, Yang JY, Alexandrov T, Dorrestein PC (2013) Data-independent microbial metabolomics with ambient ionization mass spectrometry. J Am Soc Mass Spectrom 24(8):1167–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ren JL, Zhang AH, Kong L, Wang XJ (2018) Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 8(40):22335–22350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20(6):353–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Tech 48(4):2097–2098

    Google Scholar 

  72. Sebak M, Saafan AE, AbdelGhani S, Bakeer W, El-Gendy AO, Espriu LC, Duncan K, Edrada-Ebel R (2019) Bioassay-and metabolomics-guided screening of bioactive soil actinomycetes from the ancient city of Ihnasia, Egypt. PLoS One 14(12):e0226959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shank EA (2018) Considering the lives of microbes in microbial communities. MSystems 3(2):e00155-17

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shih CJ, Chen PY, Liaw CC, Lai YM, Yang YL (2014) Bringing microbial interactions to light using imaging mass spectrometry. Nat Prod Rep 31(6):739–755

    Article  CAS  PubMed  Google Scholar 

  75. Škrášková K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RM (2016) Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods 104:69–78

    Article  PubMed  Google Scholar 

  76. Spraker JE, Luu GT, Sanchez LM (2020) Imaging mass spectrometry for natural products discovery: a review of ionization methods. Nat Prod Rep 37(2):150–162

    Article  PubMed  PubMed Central  Google Scholar 

  77. Strittmatter N, Jones EA, Veselkov KA, Rebec M, Bundy JG, Takats Z (2013) Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry. Chem Commun 49(55):6188–6190

    Article  CAS  Google Scholar 

  78. Sumner, L. W., Amberg, A., Barrett, D., Beale, M., Beger, R., Daykin, C., -M.Fan, T., Fiehn, O., Goodacre, R., Griffin, J., Hankemeir, T., Hardy, N., Harnly, J.M., Higashi, R., Kopka, J., Lane, A., Lindon, J., Marriott, P., Nicholls, A., Reily, M., Thaden, J., Viant, M., 2007. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221. https://doi.org/10.1007/s11306-007-0082-2

  79. Tabang DN, Ford M, Li L (2021) Recent advances in mass spectrometry-based Glycomic and Glycoproteomic studies of pancreatic diseases. Front Chem 9:707387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tian H, Six DA, Krucker T, Leeds JA, Winograd N (2017) Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry. Anal Chem 89(9):5050–5057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Utermann C, Echelmeyer VA, Blümel M, Tasdemir D (2020) Culture-dependent microbiome of the Ciona intestinalis tunic: isolation, bioactivity profiling and untargeted metabolomics. Microorganisms 8(11):1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Valli M, Russo HM, Pilon AC, Pinto MEF, Dias NB, Freire RT, Castro-Gamboa I, Bolzani VS (2019) Computational methods for NMR and MS for structure elucidation II: database resources and advanced methods. Phys Sci Rev 4(11):20180108

    Google Scholar 

  83. Viegas MC, Bassoli DG (2007) Utilização do índice de retenção linear para caracterização de compostos voláteis em café solúvel utilizando GC-MS e coluna HP-Innowax. Quím Nova 30(8):2031–2034

    Article  CAS  Google Scholar 

  84. Wandy J, Davies V, van der Hooft JJJ, Weidt S, Daly R, Rogers S (2019) In silico optimization of mass spectrometry fragmentation strategies in metabolomics. Metabolites 9(10):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northern T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya PCA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O’Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34(8):828–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang L, Lv W, Sun X, Zheng F, Xu T, Liu X, Li H, Lu X, Peng X, Hu C, Xu G (2021) Strategy for nontargeted Metabolomic annotation and quantitation using a high-resolution spectral-stitching Nanoelectrospray direct-infusion mass spectrometry with data-independent acquisition. Anal Chem 93(30):10528–10537

    Article  CAS  PubMed  Google Scholar 

  87. Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9(9):683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Watrous JD, Phelan VV, Hsu CC, Moree WJ, Duggan BM, Alexandrov T, Dorrestein PC (2013) Microbial metabolic exchange in 3D. ISME J 7(4):770–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weisskopf L, Schulz S, Garbeva P (2021) Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol 19(6):391–404

    Article  CAS  PubMed  Google Scholar 

  90. Werres T, Leonhardt J, Jäger M, Teutenberg T (2018) Critical comparison of liquid chromatography coupled to mass spectrometry and three different ion mobility spectrometry systems on their separation capability for small isomeric compounds. Chromatographia 82(1):251–260

    Article  Google Scholar 

  91. Wolfender JL, Nuzillard JM, Van Der Hooft JJ, Renault JH, Bertrand S (2018) Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal Chem 91(1):704–742

    Article  PubMed  Google Scholar 

  92. Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, Fleming TC, Wenter R, Moore BS, Golden SS, Pogliano K, Dorrestein PC (2012) Primer on agar-based microbial imaging mass spectrometry. J Bacteriol 194(22):6023–6028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang H, Goodlett DR, Ernst RK, Scott AJ (2020) Mass spectrometry imaging of microbes. Mass Spectrom Lett 11(3):41–51

    Google Scholar 

  94. Yao F, Yi B, Shen C, Tao F, Liu Y, Lin Z, Xu P (2015) Chemical analysis of the Chinese liquor Luzhoulaojiao by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Sci Rep 5(1):1–6

    Google Scholar 

  95. Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol BioSyst 8(2):470–481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors aknowledge Coordenação de Aperfeiçoamento de Nível Superior - CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for fellowships and financial support.

Conflict of Interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boniek Gontijo Vaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lima, N.M., dos Santos, G.F., da Silva Lima, G., Vaz, B.G. (2023). Advances in Mass Spectrometry-Metabolomics Based Approaches. In: Pacheco Fill, T. (eds) Microbial Natural Products Chemistry. Advances in Experimental Medicine and Biology(), vol 1439. Springer, Cham. https://doi.org/10.1007/978-3-031-41741-2_5

Download citation

Publish with us

Policies and ethics