Skip to main content

Chemical-Biology and Metabolomics Studies in Phage-Host Interactions

  • Chapter
  • First Online:
Microbial Natural Products Chemistry

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1439))

Abstract

For many years, several studies have explored the molecular mechanisms involved in the infection of bacteria by their specific phages to understand the main infection strategies and the host defense strategies. The modulation of the mechanisms involved in the infection, as well as the expression of key substances in the development of the different life cycles of phages, function as a natural source of strategies capable of promoting the control of different pathogens that are harmful to human and animal health. Therefore, this chapter aims to provide an overview of the mechanisms involved in virus-bacteria interaction to explore the main compounds produced or altered as a chemical survival strategy and the metabolism modulation when occurring a host-phage interaction. In this context, emphasis will be given to the chemistry of peptides/proteins and enzymes encoded by bacteriophages in the control of pathogenic bacteria and the use of secondary metabolites recently reported as active participants in the mechanisms of phage-bacteria interaction. Finally, metabolomics strategies developed to gain new insights into the metabolism involved in the phage-host interaction and the metabolomics workflow in host-phage interaction will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohr KI (2016) History of antibiotics research. In: Current topics in microbiology and immunology. Springer, pp 237ā€“272

    Google ScholarĀ 

  2. Collignon P, McEwen S (2019) One health ā€“ its importance in helping to better control antimicrobial resistance. Trop Med Infect Dis 4:22. https://doi.org/10.3390/tropicalmed4010022

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Klein EY, Van Boeckel TP, Martinez EM et al (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A 115:E3463ā€“E3470. https://doi.org/10.1073/pnas.1717295115

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Davies J (2006) Where have all the antibiotics gone? In: Canadian Journal of Infectious Diseases and Medical Microbiology. Hindawi Limited, pp 287ā€“290

    Google ScholarĀ 

  5. World Health Organization (1983) Antimicrobial resistance. Bull World Health Organ 61:383ā€“394

    Google ScholarĀ 

  6. Asadi A, Razavi S, Talebi M, Gholami M (2019) A review on anti-adhesion therapies of bacterial diseases. Infection 47:13ā€“23. https://doi.org/10.1007/s15010-018-1222-5

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928. https://doi.org/10.3389/fmicb.2018.02928

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417ā€“433. https://doi.org/10.1128/MMBR.00016-10

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482ā€“501. https://doi.org/10.3934/microbiol.2018.3.482

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318ā€“327. https://doi.org/10.1016/S1473-3099(17)30753-3

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Antibiotic / Antimicrobial resistance | CDC. https://www.cdc.gov/DrugResistance/. Accessed 28 Apr 2023

  12. Shallcross LJ, Howard SJ, Fowler T, Davies SC (2015) Tackling the threat of antimicrobial resistance: from policy to sustainable action. Philos Trans R Soc B Biol Sci 370:20140082. https://doi.org/10.1098/rstb.2014.0082

    ArticleĀ  Google ScholarĀ 

  13. Iskandar K, Murugaiyan J, Hammoudi Halat D et al (2022) Antibiotic discovery and resistance: the chase and the race. Antibiotics 11:182. https://doi.org/10.3390/antibiotics11020182

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Wittebole X, De Roock S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:226ā€“235. https://doi.org/10.4161/viru.25991

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Rolain J-M, Hraiech S, Bregeon F (2015) Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Des Devel Ther 9:3653. https://doi.org/10.2147/DDDT.S53123

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Dy RL, Rigano LA, Fineran PC (2018) Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem Soc Trans 46:1605ā€“1613. https://doi.org/10.1042/BST20180178

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Vu NT, Oh C-S (2020) Bacteriophage usage for bacterial disease management and diagnosis in plants. Plant Pathol J 36:204ā€“217. https://doi.org/10.5423/PPJ.RW.04.2020.0074

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Dewanggana MN, Evangeline C, Ketty MD et al (2022) Isolation, characterization, molecular analysis and application of bacteriophage DW-EC to control Enterotoxigenic Escherichia coli on various foods. Sci Rep 12:495. https://doi.org/10.1038/s41598-021-04534-8

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Kawacka I, Olejnik-Schmidt A, Schmidt M, Sip A (2020) Effectiveness of phage-based inhibition of listeria monocytogenes in food products and food processing environments. Microorganisms 8:1764. https://doi.org/10.3390/microorganisms8111764

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Huang Z, Zhang Z, Tong J et al (2021) Phages and their lysins: toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 20:3319ā€“3343. https://doi.org/10.1111/1541-4337.12757

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  21. Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Microbiology 128:307ā€“318. https://doi.org/10.1099/00221287-128-2-307

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Williams Smith H, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarhoea in calves, piglets and lambs. J Gen Microbiol 129:2659ā€“2675. https://doi.org/10.1099/00221287-129-8-2659

    ArticleĀ  Google ScholarĀ 

  23. Melo LDR, Oliveira H, Pires DP et al (2020) Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 46:78ā€“99. https://doi.org/10.1080/1040841X.2020.1729695

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. Arch Immunol Ther Exp 35:569ā€“583

    CASĀ  Google ScholarĀ 

  25. Cislo M, Dabrowski M, Weber-Dabrowska B, Woyton A (1987) Bacteriophage treatment of suppurative skin infections. Arch Immunol Ther Exp 35:175ā€“183

    CASĀ  Google ScholarĀ 

  26. Wright A, Hawkins CH, ƄnggĆ„rd EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349ā€“357. https://doi.org/10.1111/j.1749-4486.2009.01973.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Fukuda K, Ishida W, Uchiyama J et al (2012) Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration. PLoS One 7. https://doi.org/10.1371/JOURNAL.PONE.0047742

  28. Basu S, Agarwal M, Kumar Bhartiya S et al (2015) An in vivo wound model utilizing bacteriophage therapy of Pseudomonas aeruginosa biofilms. Ostomy Wound Manage 61:16ā€“23

    PubMedĀ  Google ScholarĀ 

  29. Maddocks S, Fabijan AP, Ho J et al (2019) Bacteriophage therapy of ventilator-associated pneumonia and empyema caused by Pseudomonas aeruginosa. Am J Respir Crit Care Med 200:1179ā€“1181. https://doi.org/10.1164/rccm.201904-0839LE

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  30. Soothill JS (1992) Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 37:258ā€“261. https://doi.org/10.1099/00222615-37-4-258

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61. https://doi.org/10.1128/AAC.00954-17

  32. Knirel YA, Shneider MM, Popova AV et al (2020) Mechanisms of Acinetobacter baumannii capsular polysaccharide cleavage by phage depolymerases. Biochemist 85:567ā€“574. https://doi.org/10.1134/S0006297920050053

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Volozhantsev NV, Shpirt AM, Borzilov AI et al (2020) Characterization and therapeutic potential of bacteriophage-encoded polysaccharide depolymerases with Ī² galactosidase activity against Klebsiella pneumoniae K57 capsular type. Antibiotics 9:732. https://doi.org/10.3390/antibiotics9110732

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Tanji Y, Shimada T, Fukudomi H et al (2005) Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 100:280ā€“287. https://doi.org/10.1263/jbb.100.280

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Bryan D, El-Shibiny A, Hobbs Z et al (2016) Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01391

  36. Lehman SM, Mearns G, Rankin D et al (2019) Design and preclinical development of a phage product for the treatment of antibiotic-resistant staphylococcus aureus infections. Viruses 88(11):88. https://doi.org/10.3390/V11010088

    ArticleĀ  Google ScholarĀ 

  37. Petrovic Fabijan A, Lin RCY, Ho J et al (2020) Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol 5:465ā€“472. https://doi.org/10.1038/s41564-019-0634-z

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127ā€“181. https://doi.org/10.1016/j.femsre.2003.08.001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317ā€“327. https://doi.org/10.1038/nrmicro2315

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Hendrix H, Zimmermann-Kogadeeva M, Zimmermann M et al (2022) Metabolic reprogramming of Pseudomonas aeruginosa by phage-based quorum sensing modulation. Cell Rep 38:110372. https://doi.org/10.1016/j.celrep.2022.110372

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. De Smet J, Zimmermann M, Kogadeeva M et al (2016) High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J 10:1823ā€“1835. https://doi.org/10.1038/ismej.2016.3

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Kutter E, Bryan D, Ray G et al (2018) From host to phage metabolism: hot tales of phage T4ā€™s takeover of E. coli. Viruses 10:387. https://doi.org/10.3390/v10070387

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Pini A, Giuliani A, Falciani C et al (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 49:2665ā€“2672. https://doi.org/10.1128/AAC.49.7.2665-2672.2005

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Bishop-Hurley SL, Rea PJ, McSweeney CS (2010) Phage-displayed peptides selected for binding to Campylobacter jejuni are antimicrobial. Protein Eng Des Sel 23:751ā€“757. https://doi.org/10.1093/protein/gzq050

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Larpin Y, Oechslin F, Moreillon P et al (2018) In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria. PLoS One 13:e0192507. https://doi.org/10.1371/journal.pone.0192507

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y (2021) Antimicrobial peptides: an update on classifications and databases. Int J Mol Sci 22:11691. https://doi.org/10.3390/ijms222111691

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Al-Wrafy F, Brzozowska E, GĆ³rska S et al (2019) Identification and characterization of phage protein and its activity against two strains of multidrug-resistant Pseudomonas aeruginosa. Sci Rep 9:13487. https://doi.org/10.1038/s41598-019-50030-5

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. De Smet J, Wagemans J, Boon M et al (2021) The bacteriophage LUZ24 ā€œIgyā€ peptide inhibits the Pseudomonas DNA gyrase. Cell Rep 36:109567. https://doi.org/10.1016/j.celrep.2021.109567

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Kever L, HĆ¼nnefeld M, Brehm J et al (2021) Identification of Gip as a novel phage-encoded gyrase inhibitor protein of Corynebacterium glutamicum. Mol Microbiol 116:1268ā€“1280. https://doi.org/10.1111/mmi.14813

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Glonti T, Chanishvili N, Taylor PW (2010) Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol 108:695ā€“702. https://doi.org/10.1111/j.1365-2672.2009.04469.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B et al (2012) Learning from bacteriophages ā€“ advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 13:699. https://doi.org/10.2174/138920312804871193

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Sainath Rao S, Mohan KVK, Atreya CD (2013) A peptide derived from phage display library exhibits antibacterial activity against E. coli and Pseudomonas aeruginosa. PLoS One 8:e56081. https://doi.org/10.1371/journal.pone.0056081

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Briers Y, Walmagh M, Grymonprez B et al (2014) Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:3774ā€“3784. https://doi.org/10.1128/AAC.02668-14/SUPPL_FILE/ZAC007143000SO1.PDF

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Pires DP, Oliveira H, Melo LDR et al (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141ā€“2151. https://doi.org/10.1007/s00253-015-7247-0

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Thandar M, Lood R, Winer BY et al (2016) Novel engineered peptides of a phage lysin as effective antimicrobials against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 60:2971ā€“2979. https://doi.org/10.1128/AAC.02972-15

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Peng SY, You RI, Lai MJ et al (2017) Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2. Sci Rep 7:1ā€“12. https://doi.org/10.1038/s41598-017-11832-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. Latka A, Maciejewska B, Majkowska-Skrobek G et al (2017) Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 101:3103ā€“3119. https://doi.org/10.1007/s00253-017-8224-6

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Forterre P (2010) Defining life: the virus viewpoint. Orig Life Evol Biosph 40:151ā€“160. https://doi.org/10.1007/s11084-010-9194-1

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Forterre P (2016) To be or not to be alive: how recent discoveries challenge the traditional definitions of viruses and life. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 59:100ā€“108. https://doi.org/10.1016/j.shpsc.2016.02.013

    ArticleĀ  Google ScholarĀ 

  60. Nasir A, Romero-Severson E, Claverie J-M (2020) Investigating the concept and origin of viruses. Trends Microbiol 28:959ā€“967. https://doi.org/10.1016/j.tim.2020.08.003

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  61. Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO (2020) Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat Commun 11:1710. https://doi.org/10.1038/s41467-020-15507-2

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74:5088ā€“5090. https://doi.org/10.1073/pnas.74.11.5088

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Farner DS (1983) The growth of biological thought. Diversity, evolution, and inheritance. Auk 100:507ā€“549. https://doi.org/10.1093/auk/100.2.507

    ArticleĀ  Google ScholarĀ 

  64. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221ā€“271. https://doi.org/10.1128/MR.51.2.221-271.1987

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576ā€“4579. https://doi.org/10.1073/pnas.87.12.4576

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science (80- ) 292:1096ā€“1099. https://doi.org/10.1126/science.1058543

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Stanier RY, Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17ā€“35. https://doi.org/10.1007/BF00425185

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Sapp J (2005) The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol Mol Biol Rev 69:292ā€“305. https://doi.org/10.1128/MMBR.69.2.292-305.2005

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. BrĆ¼ssow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560ā€“602. https://doi.org/10.1128/MMBR.68.3.560-602.2004

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Clokie MRJ, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31ā€“45. https://doi.org/10.4161/bact.1.1.14942

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Little JW (2014) Lysogeny, prophage induction, and lysogenic conversion. Phages 37ā€“54. https://doi.org/10.1128/9781555816506.CH3

  72. Correa AMS, Howard-Varona C, Coy SR et al (2021) Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol 19:501ā€“513. https://doi.org/10.1038/s41579-021-00530-x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Edlin G, Lin L, Kudrna R (1975) Ī» Lysogens of E. coli reproduce more rapidly than non-lysogens. Nature 255:735ā€“737. https://doi.org/10.1038/255735a0

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Lin L, Bitner R, Edlin G (1977) Increased reproductive fitness of Escherichia coli lambda lysogens. J Virol 21:554ā€“559. https://doi.org/10.1128/jvi.21.2.554-559.1977

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science (80- ) 272:1910ā€“1914. https://doi.org/10.1126/science.272.5270.1910

    ArticleĀ  CASĀ  Google ScholarĀ 

  76. Sekulovic O, Meessen-Pinard M, Fortier L-C (2011) Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol 193:2726ā€“2734. https://doi.org/10.1128/JB.00787-10

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769ā€“783. https://doi.org/10.2217/fmb.13.47

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Argov T, Azulay G, Pasechnek A et al (2017) Temperate bacteriophages as regulators of host behavior. Curr Opin Microbiol 38:81ā€“87. https://doi.org/10.1016/j.mib.2017.05.002

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Abedon ST, Duffy S, Turner PE (2009) Bacteriophage ecology. In: Encyclopedia of microbiology. Elsevier, pp 42ā€“57

    ChapterĀ  Google ScholarĀ 

  80. Feiner R, Argov T, Rabinovich L et al (2015) A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 13:641ā€“650. https://doi.org/10.1038/nrmicro3527

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Hatfull GF, Hendrix RW (2011) Bacteriophages and their genomes. Curr Opin Virol 1:298ā€“303. https://doi.org/10.1016/j.coviro.2011.06.009

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Ackermann HW (2011) Bacteriophage taxonomy. Microbiol Aust 32:90. https://doi.org/10.1071/MA11090

    ArticleĀ  Google ScholarĀ 

  83. Tolstoy I, Kropinski AM, Brister JR (2018) Bacteriophage taxonomy: an evolving discipline. In: Methods in molecular biology. Humana Press, New York, pp 57ā€“71

    Google ScholarĀ 

  84. Shang J, Jiang J, Sun Y (2021) Bacteriophage classification for assembled contigs using graph convolutional network. Bioinformatics 37:I25ā€“I33. https://doi.org/10.1093/bioinformatics/btab293

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  85. Taxonomy browser (Nematoda). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=28883&lvl=3&lin=f&keep=1&srchmode=1&unlock. Accessed 1 May 2022

  86. Krupovic M, Prangishvili D, Hendrix RW, Bamford DH (2011) Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 75:610ā€“635. https://doi.org/10.1128/mmbr.00011-11

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond Ser B Biol Sci 269:931ā€“936. https://doi.org/10.1098/rspb.2001.1945

    ArticleĀ  Google ScholarĀ 

  88. Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363:fnw002. https://doi.org/10.1093/femsle/fnw002

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  89. Nordstrƶm K, Forsgren A (1974) Effect of protein A on adsorption of bacteriophages to Staphylococcus aureus. J Virol 14:198ā€“202. https://doi.org/10.1128/jvi.14.2.198-202.1974

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. Pedruzzi I, Rosenbusch JP, Locher KP (1998) Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein. FEMS Microbiol Lett 168:119ā€“125. https://doi.org/10.1111/J.1574-6968.1998.TB13264.X

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  91. Hammad AMM (1998) Evaluation of alginate-encapsulated Azotobacter chroococcum as a phage-resistant and an effective inoculum. J Basic Microbiol 38:9ā€“16. https://doi.org/10.1002/(SICI)1521-4028(199803)38:1

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. Cote GL, Krull LH (1988) Characterization of the exocellular polysaccharides from Azotobacter chroococcum. Carbohydr Res 181:143ā€“152. https://doi.org/10.1016/0008-6215(88)84030-8

    ArticleĀ  CASĀ  Google ScholarĀ 

  93. Perry LL, SanMiguel P, Minocha U et al (2009) Sequence analysis of Escherichia coli O157:H7 bacteriophage ƎĀ¦V10 and identification of a phage-encoded immunity protein that modifies the O157 antigen. FEMS Microbiol Lett 292:182ā€“186. https://doi.org/10.1111/j.1574-6968.2009.01511.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  94. van Houte S, Buckling A, Westra ER (2016) Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev 80:745ā€“763. https://doi.org/10.1128/MMBR.00011-16

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  95. Burmeister AR, Fortier A, Roush C et al (2020) Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Natl Acad Sci U S A 117:11207ā€“11216. https://doi.org/10.1073/pnas.1919888117

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. Trudelle DM, Bryan DW, Hudson LK, Denes TG (2019) Cross-resistance to phage infection in Listeria monocytogenes serotype 1/2a mutants. Food Microbiol 84:103239. https://doi.org/10.1016/j.fm.2019.06.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  97. Yu H, Shang L, Yang G et al (2022) Biosynthetic microcin J25 exerts strong antibacterial, anti-inflammatory activities, low cytotoxicity without increasing drug-resistance to bacteria target. Front Immunol 13:1. https://doi.org/10.3389/fimmu.2022.811378

    ArticleĀ  CASĀ  Google ScholarĀ 

  98. Parker JK, Davies BW (2022) Microcins reveal natural mechanisms of bacterial manipulation to inform therapeutic development. Microbiology 168:001175. https://doi.org/10.1099/mic.0.001175

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  99. Vincent P, Morero R (2009) The structure and biological aspects of peptide antibiotic microcin J25. Curr Med Chem 16:538ā€“549. https://doi.org/10.2174/092986709787458461

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  100. Destoumieux-GarzĆ³n D, Duquesne S, Peduzzi J et al (2005) The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 Ī²-hairpin region in the recognition mechanism. Biochem J 389:869ā€“876. https://doi.org/10.1042/BJ20042107

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  101. Mathavan I, Zirah S, Mehmood S et al (2014) Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides. Nat Chem Biol 10:340ā€“342. https://doi.org/10.1038/NCHEMBIO.1499

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  102. Luria SE, Human ML (1952) A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 64:557ā€“569. https://doi.org/10.1128/jb.64.4.557-569.1952

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  103. Tock MR, Dryden DTF (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8:466ā€“472. https://doi.org/10.1016/j.mib.2005.06.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  104. Luria SE (1953) Host-induced modifications of viruses. Cold Spring Harb Symp Quant Biol 18:237ā€“244. https://doi.org/10.1101/SQB.1953.018.01.034

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  105. Garneau JE, Dupuis M-ƈ, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67ā€“71. https://doi.org/10.1038/nature09523

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  106. Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390ā€“1400. https://doi.org/10.1128/JB.01412-07

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  107. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2013) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429ā€“432. https://doi.org/10.1038/nature11723

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  108. Wiedenheft B (2013) In defense of phage. RNA Biol 10:886ā€“890. https://doi.org/10.4161/rna.23591

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  109. Seed KD, Lazinski DW, Calderwood SB, Camilli A (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489ā€“491. https://doi.org/10.1038/nature11927

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  110. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746ā€“2753. https://doi.org/10.1128/AEM.67.6.2746-2753.2001

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  111. Sutherland IW (1999) Polysaccharases for microbial exopolysaccharides. Carbohydr Polym 38:319ā€“328. https://doi.org/10.1016/S0144-8617(98)00114-3

    ArticleĀ  CASĀ  Google ScholarĀ 

  112. Linhardt RJ, Galliher PM, Cooney CL (1987) Polysaccharide lyases. Appl Biochem Biotechnol 12:135ā€“176. https://doi.org/10.1007/BF02798420

    ArticleĀ  Google ScholarĀ 

  113. Leiman PG, Battisti AJ, Bowman VD et al (2007) The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol 371:836ā€“849. https://doi.org/10.1016/j.jmb.2007.05.083

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  114. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002ā€“14015

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  115. Scholl D, Adhya S, Merril C (2005) Escherichia coli K1ā€™s capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 71:4872ā€“4874. https://doi.org/10.1128/AEM.71.8.4872-4874.2005

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  116. Cornelissen A, Ceyssens PJ, Krylov VN et al (2012) Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology 434:251ā€“256. https://doi.org/10.1016/j.virol.2012.09.030

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  117. Coulon C, Vinogradov E, Filloux A, Sadovskaya I (2010) Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14. PLoS One 5. https://doi.org/10.1371/journal.pone.0014220

  118. Colvin KM, Irie Y, Tart CS et al (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14:1913ā€“1928. https://doi.org/10.1111/j.1462-2920.2011.02657.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  119. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 47:3407ā€“3414. https://doi.org/10.1128/AAC.47.11.3407-3414.2003

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  120. Aguinaga A, FrancĆ©s ML, Del Pozo JL et al (2011) Lysostaphin and clarithromycin: a promising combination for the eradication of Staphylococcus aureus biofilms. Int J Antimicrob Agents 37:585ā€“587. https://doi.org/10.1016/j.ijantimicag.2011.02.009

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  121. Drilling AJ, Cooksley C, Chan C et al (2016) Fighting sinus-derived Staphylococcus aureus biofilms in vitro with a bacteriophage-derived muralytic enzyme. Int Forum Allergy Rhinol 6:349ā€“355. https://doi.org/10.1002/alr.21680

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  122. Roach DR, Donovan DM (2015) Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5:e1062590. https://doi.org/10.1080/21597081.2015.1062590

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  123. Wan X, Hendrix H, Skurnik M, Lavigne R (2021) Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr Opin Biotechnol 68:1ā€“7. https://doi.org/10.1016/J.COPBIO.2020.08.015

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  124. Yan J, Mao J, Xie J (2014) Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 28:265ā€“274. https://doi.org/10.1007/S40259-013-0081-Y/METRICS

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  125. RodrĆ­guez-Rubio L, MartĆ­nez B, Donovan DM et al (2013) Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 39:427ā€“434. https://doi.org/10.3109/1040841X.2012.723675

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  126. Sharma U, Paul VD (2017) Bacteriophage lysins as antibacterials. Crit Care 21:99. https://doi.org/10.1186/s13054-017-1681-6

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  127. Borysowski J, Weber-Daį¹ƒbrowska B, GĆ³rski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 231:366ā€“377

    ArticleĀ  CASĀ  Google ScholarĀ 

  128. Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A 98:4107ā€“4112. https://doi.org/10.1073/pnas.061038398

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  129. Briers Y, Volckaert G, Cornelissen A et al (2007) Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages? KZ and EL. Mol Microbiol 65:1334ā€“1344. https://doi.org/10.1111/j.1365-2958.2007.05870.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  130. Walmagh M, Briers Y, Santos SB dos et al (2012) Characterization of modular bacteriophage endolysins from myoviridae phages OBP, 201Ļ†2-1 and PVP-SE1. PLoS One 7:e36991. https://doi.org/10.1371/journal.pone.0036991

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  131. Chanishvili N (2012) Phage therapy-history from Twort and dā€™Herelle through soviet experience to current approaches. Adv Virus Res 83:3ā€“40

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  132. Międzybrodzki R, Hoyle N, Zhvaniya F et al (2021) Current updates from the long-standing phage research centers in Georgia, Poland, and Russia. Bacteriophages 921ā€“951. https://doi.org/10.1007/978-3-319-41986-2_31

  133. Schmelcher M, Donovan DM, Loessner MJ (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147ā€“1171

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  134. Matsuda M, Barksdale L (1966) Phage-directed synthesis of diphtherial toxin in non-toxinogenic Corynebacterium diphtheriae. Nature 210:911ā€“913. https://doi.org/10.1038/210911a0

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  135. Fujii N, Oguma K, Yokosawa N et al (1988) Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D. Appl Environ Microbiol 54:69ā€“73. https://doi.org/10.1128/aem.54.1.69-73.1988

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  136. Oā€™Brien AD, Newland JW, Miller SF et al (1984) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science (80- ) 226:694ā€“696. https://doi.org/10.1126/science.6387911

    ArticleĀ  Google ScholarĀ 

  137. RodrĆ­guez-Rubio L, Haarmann N, Schwidder M et al (2021) Bacteriophages of shiga toxin-producing escherichia coli and their contribution to pathogenicity. Pathogens 10. https://doi.org/10.3390/pathogens10040404

  138. Silpe JE, Wong JWH, Owen SV et al (2022) The bacterial toxin colibactin triggers prophage induction. Nature 6037900(603):315ā€“320. https://doi.org/10.1038/s41586-022-04444-3

    ArticleĀ  CASĀ  Google ScholarĀ 

  139. Nedialkova LP, Sidstedt M, Koeppel MB et al (2016) Temperate phages promote colicin-dependent fitness of Salmonella enterica serovar Typhimurium. Environ Microbiol 18:1591ā€“1603. https://doi.org/10.1111/1462-2920.13077

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  140. Hilsenbeck JL, Park H, Chen G et al (2004) Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 ƅ resolution. Mol Microbiol 51:711ā€“720. https://doi.org/10.1111/j.1365-2958.2003.03884.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  141. Kronheim S, Daniel-Ivad M, Duan Z et al (2018) A chemical defence against phage infection. Nature 564:283ā€“286. https://doi.org/10.1038/s41586-018-0767-x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  142. Nicholson J, Lindon J, Xenobiotica EH-, 1999 undefined (2008) ā€œMetabonomicsā€: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR. Taylor Fr 29:1181ā€“1189. https://doi.org/10.1080/004982599238047

    ArticleĀ  Google ScholarĀ 

  143. Klassen A, Faccio AT, Canuto GAB et al (2017) Metabolomics: definitions and significance in systems biology. Adv Exp Med Biol 965:3ā€“17. https://doi.org/10.1007/978-3-319-47656-8_1/FIGURES/2

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  144. Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 98:30.2.1ā€“30.2.24. https://doi.org/10.1002/0471142727.MB3002S98

    ArticleĀ  Google ScholarĀ 

  145. Vinayavekhin N, Saghatelian A (2010) Untargeted metabolomics. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.MB3001S90

  146. Fiehn O (2002) Metabolomics ā€“ the link between genotypes and phenotypes. Funct Genomics 155ā€“171. https://doi.org/10.1007/978-94-010-0448-0_11

  147. Griffin JL (2006) The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos Trans R Soc B Biol Sci 361:147ā€“161. https://doi.org/10.1098/RSTB.2005.1734

    ArticleĀ  Google ScholarĀ 

  148. Fiehn O, Robertson D, Griffin J et al (2007) The metabolomics standards initiative (MSI). Metabolomics 3:175ā€“178. https://doi.org/10.1007/S11306-007-0070-6/FIGURES/2

    ArticleĀ  CASĀ  Google ScholarĀ 

  149. Rosato A, Tenori L, Cascante M et al (2018) From correlation to causation: analysis of metabolomics data using systems biology approaches. Metabolomics 144(14):1ā€“20. https://doi.org/10.1007/S11306-018-1335-Y

    ArticleĀ  Google ScholarĀ 

  150. Zhao X, Shen M, Jiang X et al (2017) Transcriptomic and metabolomics profiling of phage-host interactions between phage PaP1 and Pseudomonas aeruginosa. Front Microbiol 8:548. https://doi.org/10.3389/FMICB.2017.00548/BIBTEX

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  151. Zhao X, Chen C, Jiang X et al (2016) Transcriptomic and metabolomic analysis revealed multifaceted effects of phage protein Gp70.1 on Pseudomonas aeruginosa. Front Microbiol 7:1519. https://doi.org/10.3389/FMICB.2016.01519/BIBTEX

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  152. Chevallereau A, Blasdel BG, De Smet J et al (2016) Next-generation ā€œ-omicsā€ approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa. PLoS Genet 12:e1006134. https://doi.org/10.1371/JOURNAL.PGEN.1006134

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  153. Hsu BB, Gibson TE, Yeliseyev V et al (2019) Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25:803ā€“814.e5. https://doi.org/10.1016/J.CHOM.2019.05.001

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  154. Han ML, Nang SC, Lin YW et al (2022) Comparative metabolomics revealed key pathways associated with the synergistic killing of multidrug-resistant Klebsiella pneumoniae by a bacteriophage-polymyxin combination. Comput Struct Biotechnol J 20:485ā€“495. https://doi.org/10.1016/J.CSBJ.2021.12.039

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  155. Sonkar K, Purusottam RN, Sinha N (2012) Metabonomic study of host-phage interaction by nuclear magnetic resonance- and statistical total correlation spectroscopy-based analysis. Anal Chem 84:4063ā€“4070. https://doi.org/10.1021/AC300096J/SUPPL_FILE/AC300096J_SI_001.PDF

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  156. Ankrah NYD, May AL, Middleton JL et al (2014) Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J 85(8):1089ā€“1100. https://doi.org/10.1038/ismej.2013.216

    ArticleĀ  CASĀ  Google ScholarĀ 

  157. Lorenzo-Rebenaque L, Casto-Rebollo C, Diretto G et al (2022) Examining the effects of Salmonella phage on the caecal microbiota and metabolome features in Salmonella-free broilers. Front Genet 13:3219. https://doi.org/10.3389/FGENE.2022.1060713/BIBTEX

    ArticleĀ  Google ScholarĀ 

  158. Perez de Souza L, Alseekh S, Scossa F, Fernie AR (2021) Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods 187(18):733ā€“746. https://doi.org/10.1038/s41592-021-01116-4

    ArticleĀ  CASĀ  Google ScholarĀ 

  159. Saccenti E, Hoefsloot HCJ, Smilde AK et al (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10:361ā€“374. https://doi.org/10.1007/S11306-013-0598-6/FIGURES/6

    ArticleĀ  CASĀ  Google ScholarĀ 

  160. Kumar N, Hoque MA, Sugimoto M (2018) Robust volcano plot: identification of differential metabolites in the presence of outliers. BMC Bioinform 19:128. https://doi.org/10.1186/s12859-018-2117-2

    ArticleĀ  CASĀ  Google ScholarĀ 

  161. Pinto RC (2017) Chemometrics methods and strategies in metabolomics. Adv Exp Med Biol 965:163ā€“190. https://doi.org/10.1007/978-3-319-47656-8_7/FIGURES/5

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  162. Considine EC, Thomas G, Boulesteix AL et al (2018) Critical review of reporting of the data analysis step in metabolomics. Metabolomics 14:1ā€“16. https://doi.org/10.1007/S11306-017-1299-3/TABLES/17

    ArticleĀ  CASĀ  Google ScholarĀ 

  163. Cho HW, Kim SB, Jeong MK et al (2008) Discovery of metabolite features for the modelling and analysis of high-resolution NMR spectra. Int J Data Min Bioinform 2:176. https://doi.org/10.1504/IJDMB.2008.019097

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  164. Wang M, Carver JJ, Phelan VV et al (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828ā€“837. https://doi.org/10.1038/NBT.3597

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  165. DĆ¼hrkop K, Fleischauer M, Ludwig M et al (2019) (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 164(16):299ā€“302. https://doi.org/10.1038/s41592-019-0344-8

    ArticleĀ  CASĀ  Google ScholarĀ 

  166. Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703ā€“714. https://doi.org/10.1002/JMS.1777

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  167. Mehta SS (2020) MassBank of North America (MoNA): an open-access, auto-curating mass spectral database for compound identification in metabolomics presentation

    Google ScholarĀ 

  168. Chenomx Inc | Metabolite discovery and measurement. https://www.chenomx.com/. Accessed 28 Apr 2023

  169. Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211ā€“221. https://doi.org/10.1007/s11306-007-0082-2

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  170. Howard-Varona C, Lindback MM, Bastien GE et al (2020) Phage-specific metabolic reprogramming of virocells. ISME J 144(14):881ā€“895. https://doi.org/10.1038/s41396-019-0580-z

    ArticleĀ  Google ScholarĀ 

  171. Kanehisa M, Subramaniam (2002) The KEGG database. Novartis Found Symp 247:91ā€“103. https://doi.org/10.1002/0470857897.CH8

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  172. Kanehisa M, Furumichi M, Sato Y et al (2021) KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 49:D545ā€“D551. https://doi.org/10.1093/NAR/GKAA970

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  173. Keseler IM, Gama-Castro S, Mackie A et al (2021) The EcoCyc database in 2021. Front Microbiol 12:2098. https://doi.org/10.3389/FMICB.2021.711077/BIBTEX

    ArticleĀ  Google ScholarĀ 

  174. Papaianni M, Cuomo P, Fulgione A et al (2020) Bacteriophages promote metabolic changes in bacteria biofilm. Microorganisms 8:480. https://doi.org/10.3390/MICROORGANISMS8040480

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TaĆ­cia Pacheco Fill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dantas, R., Brocchi, M., Pacheco Fill, T. (2023). Chemical-Biology and Metabolomics Studies in Phage-Host Interactions. In: Pacheco Fill, T. (eds) Microbial Natural Products Chemistry. Advances in Experimental Medicine and Biology(), vol 1439. Springer, Cham. https://doi.org/10.1007/978-3-031-41741-2_4

Download citation

Publish with us

Policies and ethics