Skip to main content

History and Science of Immunofluorescence

  • Chapter
  • First Online:
The SAGES Manual of Fluorescence-Guided Surgery

Abstract

During the last years, many new technologies, like laparoscopy, endoscopy, and robotics, have been introduced in surgery to improve daily practice. Among these techniques, “fluorescence-guided surgery” (FGS) is an intraoperative imaging system allowing the identification of structures through fluorescent probes and dedicated technology. The main aim is to improve surgical guidance. This chapter will discuss the history of immunofluorescence, basic principles of fluorescence, fluorescent probes in surgery, and clinical imaging systems.

Since its first clinical application in the surgical field in 1947, fluorescence has undergone a huge development and diffusion. To date, fluorescence has several applications in every surgical specialty like perfusion assessment, cholangiography, lymphography, tumor identification, and ureter identification.

The technique implies the administration of a fluorescent probe that is excited by light excitation source and emitted by dedicated instruments, with consequent emission of a fluorescent signal that is detected and visualized on a screen. Among the fluorescent probes already approved for clinical use, like methylene blue, fluorescein sodium, and 5-aminolevulinic acid, the most diffused is indocyanine green (ICG). ICG has some peculiar features that promote its widespread use: it is virtually harmless, due to the lowest rate of adverse effects reported and to the very high toxic dose for the human body, and it is not expensive. Many probes are currently under clinical development and will be on the market soon.

A growing number of companies developed new systems for FGS with excitation and emission spectra in the nearinfrared wavelength range, which are suitable for both fluorescence and white light imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gioux S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging. 2010;9(5):237–55.

    Article  CAS  PubMed  Google Scholar 

  2. Howell JD. Early clinical use of the x-ray. Trans Am Clin Climatol Assoc. 2016;127:341–9.

    PubMed  PubMed Central  Google Scholar 

  3. Pogue BW. Optics of medical imaging: optics plays dominant role in medical imaging market. In: SPIE professional, 2018. p. 6–8.

    Google Scholar 

  4. Stewart HL, Birch DJS. Fluorescence guided surgery. Methods Appl Fluoresc. 2021;9:4.

    Article  Google Scholar 

  5. National Research Council. Medical optical imaging mathematics and physics of emerging biomedical imaging. Washington DC: National Academy Press; 1996. https://doi.org/10.17226/5066.

    Book  Google Scholar 

  6. Orosco RK, Tsien RY, Nguyen QT. Fluorescence imaging in surgery. IEEE Rev Biomed Eng. 2013;6:178–87.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation--a new cutting edge. Nat Rev Cancer 2013;13(9):653–662.

    Google Scholar 

  8. Dip FD, Ishizawa T, Kodudo N, Rosenthal RJ. Fluorescence imaging for surgeons concepts and applications. Basel: Springer; 2015. p. 3–23. ISBN: 978-3-319-35213-8.

    Book  Google Scholar 

  9. Moore GE. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science. 1947;106:130–1.

    Article  CAS  PubMed  Google Scholar 

  10. Lay CL, Randall LM. Fluorescent staining for detection of cancer cells in vaginal smears. Surg Forum. 1953:321–7.

    Google Scholar 

  11. Raymond J, Lanzafame MD, David W, Rogers BS, John O, Nairn MS, et al. Hematoporphyrin derivative fluorescence: photographic techniques for the localization of malignant tissue. Lasers Surg Med. 1986;6(3):328–35.

    Article  Google Scholar 

  12. Ahlquist RE Jr, Figge FH. Fluorescence of the extrahepatic biliary system following parenteral hematoporphyrin administration. Surg Forum. 1956;6:356–8.

    PubMed  Google Scholar 

  13. Ackermann NB, Mc Fee AS. Tetracycline fluorescence in benign and malignant tissues. Surgery. 1963;53:247–52.

    Google Scholar 

  14. Sandlow LJ, Allen HA. The use of tetracycline fluorescence in the detection of gastric malignancy. Ann Intern Med. 1963;58(3):409–13.

    Article  CAS  PubMed  Google Scholar 

  15. Whitmore WF Jr, Bush IM. Ultraviolet cystoscopy in patients with bladder cancer. Trans Am Assoc Genitourin Surg. 1965;57:149–55.

    PubMed  Google Scholar 

  16. Málek P, Kolc J, Pultr V, Zástava V. Tetracycline fluorescence test in evaluation of ischemic changes in kidney transplantations. Rozhl Chir. 1966;45(4):252–6.

    PubMed  Google Scholar 

  17. Cassini MF, da Costa MM. Fluorescence spectroscopy in renal ischemia and reperfusion: noninvasive evaluation of organ viability. Transplant Proc. 2013;45(5):1715–9.

    Article  CAS  PubMed  Google Scholar 

  18. Nessel E, Wiggermann W. The tetracycline fluorescence test in surgery of malignant tumors; rhinolaryngologic experiences. HNO. 1965;13(12):346–9.

    CAS  PubMed  Google Scholar 

  19. Goldhahn WE. Fluorescence studies of brain tumors. Beitr Neurochir. 1966;13:126–9.

    CAS  PubMed  Google Scholar 

  20. Khutsishili TS, Milaeva MA. The use of the fluorescent method for determining the degree of revascularization of the heart in the surgical treatment of experimental cardiac ischemia. Grudn Khir. 1965;7(6):11–2. Russian.

    CAS  PubMed  Google Scholar 

  21. Loisance D, Sadony V. Value of fluorescence in the macroscopic delimitation of experimental acute myocardial ischemia before and after revascularization. Arch Mal Coeur Vaiss 1973;66(6):701–707.

    Google Scholar 

  22. Zhang RR, Schroeder AB, Grudzinski JJ, Rosenthal EL, Warram JM, Pinchuk AN, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol. 2017;14(6):347–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T. Indocyanine green: physicochemical factors affecting its fluorescence in vivo. Microvasc Res. 1998;55:146–52.

    Article  CAS  PubMed  Google Scholar 

  24. Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000;45:15–27.

    Article  CAS  PubMed  Google Scholar 

  25. Valeur B, Berberan-Santos MN. Molecular fluorescence: principles and applications. Weinheim: Wiley-VCH; 2012. ISBN: 978-3-527-32837-6.

    Book  Google Scholar 

  26. Lakowicz JR. Principles of fluorescence spectroscopy. New York, NY: Springer; 2010. ISBN: 978-1-4615-7658-7.

    Google Scholar 

  27. Azzopardi EA, Owens SE, Murison M, Rees D, Anne Sawhney M, Francis LW, et al. Chromophores in operative surgery: current practice and rationalized development. J Control Release. 2017;249:123–30.

    Article  CAS  PubMed  Google Scholar 

  28. Rashid A, Warnakulasuriya S. The use of light-based (optical) detection systems as adjuncts in the detection of oral cancer and oral potentially malignant disorders: a systematic review. J Oral Pathol Med. 2015;44(5):307–28.

    Article  CAS  PubMed  Google Scholar 

  29. de Boer E, Harlaar NJ, Taruttis A, Nagengast WB, Rosenthal EL, Ntziachristos V, van Dam GM. Optical innovations in surgery. Br J Surg. 2015;102(2):e56–72.

    Article  PubMed  Google Scholar 

  30. Fernandez-Suarez M, Ting AY. Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol. 2008;9(12):929–43.

    Article  CAS  PubMed  Google Scholar 

  31. Mondal SB, et al. Real-time fluorescence image-guided oncologic surgery. Adv Cancer Res. 2014;124:171–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG. Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci. 2002;43(7):2435–41.

    PubMed  Google Scholar 

  33. Shin D, Vigneswaran N, Gillenwater A, Richards-Kortum R. Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol. 2010;6:1143–54.

    Article  PubMed  Google Scholar 

  34. Selvam S, Sarkar I. Bile salt induced solubilization of methylene blue: study on methylene blue fluorescence properties and molecular mechanics calculation. J Pharm Anal. 2017;7:71–5.

    Article  PubMed  Google Scholar 

  35. Matsui A, Tanaka E, Choi HS, Kianzad V, Gioux S, Lomnes SJ, Frangioni JV. Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery. 2010;148:78–86.

    Article  PubMed  Google Scholar 

  36. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schaafsma BE, Mieog JS, Hutteman M, vad der Vorst JR, Kuppen PJ, Lowik CW, et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;104:323–32.

    Google Scholar 

  38. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  39. Staderini M, Megia-Fernandez A, Dhaliwal K, Bradley M. Peptides for optical medical imaging and steps towards therapy. Bioorg Med Chem. 2018;26:2816–26.

    Article  CAS  PubMed  Google Scholar 

  40. Hoogstins CES, Boogerd LSF, Sibinga Mulder BG, Mieog JSD, Swijnenburg RJ, van de Velde CJH, et al. Image-guided surgery in patients with pancreatic cancer: first results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann Surg Oncol. 2018;25:3350–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patil CG, Walker DG, Miller DM, Butte P, Morrison B, Kittle DS, et al. Phase 1 safety, pharmacokinetics, and fluorescence imaging study of Tozuleristide (BLZ-100) in adults with newly diagnosed or recurrent gliomas. Neurosurgery. 2019;85:E641–9.

    Article  PubMed  Google Scholar 

  42. Randall LM, Wenham RM, Low PS, Dowdy SC, Tanyi JL. A phase II, multicenter, open-label trial of OTL38 injection for the intra-operative imaging of folate receptor-alpha positive ovarian cancer. Gynecol Oncol. 2019;155:63–8.

    Article  CAS  PubMed  Google Scholar 

  43. Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32:7127–38.

    Article  CAS  PubMed  Google Scholar 

  44. Engelborghs Y, Visser AJWG. Fluorescence spectroscopy and microscopy: methods and protocols. Methods Mol Biol. 2014. https://doi.org/10.1007/978-1-62703-649-8.

  45. Sevick-Muraca EM, Houston JP, Gurfinkel M. Fluorescence-enhanced, nearinfrared diagnostic imaging with contrast agents. Curr Opin Chem Biol. 2002;6:642–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovica Baldari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldari, L., Boni, L., Cassinotti, E. (2023). History and Science of Immunofluorescence. In: Szoka, N., Renton, D., Horgan, S. (eds) The SAGES Manual of Fluorescence-Guided Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-40685-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40685-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40684-3

  • Online ISBN: 978-3-031-40685-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics