Skip to main content

Exploring the Capabilities of Quantum Support Vector Machines for Image Classification on the MNIST Benchmark

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Quantum computing is a rapidly growing field of science with many potential applications. One such field is machine learning applied in many areas of science and industry. Machine learning approaches can be enhanced using quantum algorithms and work effectively, as demonstrated in this paper. We present our experimental attempts to explore Quantum Support Vector Machine (QSVM) capabilities and test their performance on the collected well-known images of handwritten digits for image classification called the MNIST benchmark. A variational quantum circuit was adopted to build the quantum kernel matrix and successfully applied to the classical SVM algorithm. The proposed model obtained relatively high accuracy, up to 99%, tested on noiseless quantum simulators. Finally, we performed computational experiments on real and recently setup IBM Quantum systems and achieved promising results of around 80% accuracy, demonstrating and discussing the QSVM applicability and possible future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Ogbi, S., Ashour, A., Felemban, M.: Quantum image classification on NISQ devices. In: 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 1–7 (2022). https://doi.org/10.1109/CICN56167.2022.10008259

  2. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE (2010)

    Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  MATH  Google Scholar 

  4. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On kernel-target alignment. In: Advances in Neural Information Processing Systems, vol. 14 (2001)

    Google Scholar 

  5. Dawid, A., et al.: Modern applications of machine learning in quantum sciences. arXiv preprint arXiv:2204.04198 (2022)

  6. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  7. Glick, J.R., et al.: Covariant quantum kernels for data with group structure. arXiv preprint arXiv:2105.03406 (2021)

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  9. Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  Google Scholar 

  10. IBM: IBM Quantum – quantum-computing.ibm.com. https://quantum-computing.ibm.com/. Accessed 03 Feb 2023

  11. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Google Scholar 

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning. arXiv preprint arXiv:2001.03622 (2020)

  14. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

    Google Scholar 

  15. Park, S., Park, D.K., Rhee, J.K.K.: Variational quantum approximate support vector machine with inference transfer. Sci. Rep. 13(1), 3288 (2023)

    Article  Google Scholar 

  16. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  17. Qiskit contributors: Qiskit: an open-source framework for quantum computing (2023). https://doi.org/10.5281/zenodo.2573505

  18. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)

    Article  Google Scholar 

  19. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Singh, G., Kaur, M., Singh, M., Kumar, Y., et al.: Implementation of quantum support vector machine algorithm using a benchmarking dataset. Indian J. Pure Appl. Phys. (IJPAP) 60(5), 407–414 (2022)

    Google Scholar 

  21. Spall, J.C.: An overview of the simultaneous perturbation method for efficient optimization. J. Hopkins APL Tech. Dig. 19(4), 482–492 (1998)

    Google Scholar 

  22. Van der Walt, S., et al.: Rescale, resize, and downscale—skimage v0.19.2 docs – scikit-image.org. https://scikit-image.org/docs/stable/auto_examples/transform/plot_rescale.html (2014). Accessed 03 Feb 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Slysz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Slysz, M., Kurowski, K., Waligóra, G., Węglarz, J. (2023). Exploring the Capabilities of Quantum Support Vector Machines for Image Classification on the MNIST Benchmark. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics