Skip to main content

Learning qubo Models for Quantum Annealing: A Constraint-Based Approach

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 10477))

Included in the following conference series:

Abstract

Quantum Annealing is an optimization process taking advantage of quantum tunneling to search for the global optimum of an optimization problem, although, being a heuristic method, there is no guarantee to find the global optimum. Optimization problems solved by a Quantum Annealer machine are modeled as Quadratic Unconstrained Binary Optimization (qubo) problems. Combinatorial optimization problems, where variables take discrete values and the optimization is under constraints, can also be modeled as qubo problems to benefit from Quantum Annealing power. However, defining quadratic penalty functions representing constraints within the qubo framework can be a complex task. In this paper, we propose a method to learn from data constraint representations as a combination of patterns we isolated in \(Q\) matrices modeling optimization problems and their constraint penalty functions. We actually model this learning problem as a combinatorial optimization problem itself. We propose two experimental protocols to illustrate the strengths of our method: its scalability, where correct pattern combinations learned over data from a small constraint instance scale to large instances of the same constraint, and its robustness, where correct pattern combinations can be learned over very scarce data, composed of about 10 training elements only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see also http://xcsp.org/specifications.

  2. 2.

    https://doi.org/10.5281/zenodo.7800168.

References

  1. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber, H.G.: Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48 (2019)

    Article  Google Scholar 

  2. Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for quadratic unconstrained binary optimization (QUBO). J. Heuristics 13(2), 99–132 (2007)

    Article  Google Scholar 

  3. Boussemart, F., Lecoutre, C., Audemard, G., Piette, C.: XCSP3-core: a format for representing constraint satisfaction/optimization problems. arXiv abs/2009.00514 (2020)

    Google Scholar 

  4. Bunyk, P.I., et al.: Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Supercond. 24(4), 1–10 (2014)

    Article  Google Scholar 

  5. Chancellor, N.: Domain wall encoding of discrete variables for quantum annealing and QAOA. Quantum Sci. Technol. 4, 045004 (2019)

    Article  Google Scholar 

  6. Codognet, P.: Constraint solving by quantum annealing. In: Silla, F., Marques, O. (eds.) ICPP Workshops 2021: 50th International Conference on Parallel Processing, USA, 9–12 August 2021, pp. 25:1–25:10. ACM (2021)

    Google Scholar 

  7. Codognet, P.: Domain-wall/unary encoding in QUBO for permutation problems. In: 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 167–173 (2022)

    Google Scholar 

  8. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the AllDifferent constraint: an empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glover, F.W., Kochenberger, G.A., Du, Y.: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. 4OR 17(4), 335–371 (2019)

    Google Scholar 

  11. Goto, H., Tatsumura, K., Dixon, A.R.: Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems. Sci. Adv. 5(4) (2019)

    Google Scholar 

  12. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998)

    Article  Google Scholar 

  13. Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/s10878-014-9734-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumar, M., Kolb, S., De Raedt, L., Teso, S.: Learning mixed-integer linear programs from contextual examples. arXiv e-prints abs/2107.07136, pp. 1–11 (2021)

  15. Matsuda, Y.: Research and development of common software platform for Ising machines. In: 2020 IEICE General Conference (2020)

    Google Scholar 

  16. McGeoch, C.C., Harris, R., Reinhardt, S.P., Bunyk, P.I.: Practical annealing-based quantum computing. Computer 52(6), 38–46 (2019)

    Article  Google Scholar 

  17. Mohseni, N., McMahon, P.L., Byrnes, T.: Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4(6), 363–379 (2022)

    Article  Google Scholar 

  18. Paulus, A., Rolínek, M., Musil, V., Amos, B., Martius, G.: CombOptNet: fit the right NP-hard problem by learning integer programming constraints. In: Proceedings of the 38th International Conference on Machine Learning (ICML 2021), pp. 8443–8453. PMLR, Online (2021)

    Google Scholar 

  19. Rajak, A., Suzuki, S., Dutta, A., Chakrabarti, B.K.: Quantum annealing: an overview. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 381(2241) (2022)

    Google Scholar 

  20. Richoux, F., Baffier, J.F.: Automatic error function learning with interpretable compositional networks. Ann. Math. Artif. Intell. 1–35 (2023). Springer

    Google Scholar 

  21. Richoux, F., Uriarte, A., Baffier, J.F.: GHOST: a combinatorial optimization framework for real-time problems. IEEE Trans. Comput. Intell. AI Games 8(4), 377–388 (2016)

    Article  Google Scholar 

  22. Tanahashi, K., Takayanagi, S., Motohashi, T., Tanaka, S.: Application of Ising machines and a software development for Ising machines. J. Phys. Soc. Jpn. 88(6), 061010 (2019)

    Article  Google Scholar 

  23. Tanaka, S., Tamura, R., Chakrabarti, B.K.: Quantum Spin Glasses, Annealing and Computation, 1st edn. Cambridge University Press, USA (2017)

    Google Scholar 

  24. Yamaoka, M., Okuyama, T., Hayashi, M., Yoshimura, C., Takemoto, T.: CMOS annealing machine: an in-memory computing accelerator to process combinatorial optimization problems. In: IEEE Custom Integrated Circuits Conference, Austin, TX, USA, pp. 1–8. IEEE (2019)

    Google Scholar 

  25. Yarkoni, S., Raponi, E., Bäck, T., Schmitt, S.: Quantum annealing for industry applications: introduction and review. Rep. Prog. Phys. 85(10), 104001 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Richoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Richoux, F., Baffier, JF., Codognet, P. (2023). Learning qubo Models for Quantum Annealing: A Constraint-Based Approach. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics