Skip to main content

Towards Online Anomaly Detection in Steel Manufacturing Process

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Data generated by manufacturing processes can often be represented as a data stream. The main characteristics of these data are that it is not possible to store all the data in memory, the data are generated continuously at high speeds, and it may evolve over time. These characteristics of the data make it impossible to use ordinary machine learning techniques. Specially crafted methods are necessary to deal with these problems, which are capable of assimilation of new data and dynamic adjustment of the model. In this work, we consider a cold rolling mill, which is one of the steps in steel strip manufacturing, and apply data stream methods to predict distribution of rolling forces based on the input process parameters. The model is then used for the purpose of anomaly detection during online production. Three different machine learning scenarios are tested to determine an optimal solution that fits the characteristics of cold rolling. The results have shown that for our use case the performance of the model trained offline deteriorates over time, and additional learning is required after deployment. The best performance was achieved when the batch learning model was re-trained using a data buffer upon concept drift detection. We plan to use the results of this investigation as a starting point for future research, which will involve more advanced learning methods and a broader scope in relation to the cold rolling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, J.M.: On the theory of rolling. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 326(1567), 535–563 (1972). http://www.jstor.org/stable/77929

  2. Baena-García, M., Campo-Avila, J.D., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method (2005)

    Google Scholar 

  3. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing (2007)

    Google Scholar 

  4. Bland, D.R., Ford, H.: The calculation of roll force and torque in cold strip rolling with tensions. Proc. Inst. Mech. Eng. 159(1) (1948)

    Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees (1984)

    Google Scholar 

  6. Brzezinski, D., Stefanowski, J., Susmaga, R., Szczech, I.: On the dynamics of classification measures for imbalanced and streaming data. IEEE Trans. Neural Netw. Learn. Syst. 31, 2868–2878 (2020). https://doi.org/10.1109/TNNLS.2019.2899061

    Article  Google Scholar 

  7. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  8. Chen, Z., Liu, Y., Valera-Medina, A., Robinson, F.: Strip snap analytics in cold rolling process using machine learning. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 368–373 (2019). https://doi.org/10.1109/COASE.2019.8842967

  9. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 71–80. Association for Computing Machinery, New York (2000). https://doi.org/10.1145/347090.347107

  10. Domingos, P., Hulten, G.: Catching up with the data: research issues in mining data streams (2001)

    Google Scholar 

  11. Gama, J.: Knowledge Discovery from Data Streams, 1st edn (2010)

    Google Scholar 

  12. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106, 1469–1495 (2017). https://doi.org/10.1007/s10994-017-5642-8

    Article  MathSciNet  Google Scholar 

  13. Gomes, H.M., Read, J., Bifet, A., Barddal, J.P., Gama, J.: Machine learning for streaming data. ACM SIGKDD Explor. Newsl. 21, 6–22 (2019). https://doi.org/10.1145/3373464.3373470

    Article  Google Scholar 

  14. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017). https://doi.org/10.1016/J.ESWA.2016.12.035

    Article  Google Scholar 

  15. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 97–106. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/502512.502529

  16. Jakubowski, J., Stanisz, P., Bobek, S., Nalepa, G.J.: Roll wear prediction in strip cold rolling with physics-informed autoencoder and counterfactual explanations. In: Proceedings of the 9th IEEE International Conference on Data Science and Advanced Analytics (DSAA) (2022)

    Google Scholar 

  17. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.1611835114. https://www.pnas.org/doi/abs/10.1073/pnas.1611835114

  18. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017). https://doi.org/10.1016/j.inffus.2017.02.004

    Article  Google Scholar 

  19. Lee, S., Son, Y.: Motor load balancing with roll force prediction for a cold-rolling setup with neural networks. Mathematics 9(12), 1367 (2021). https://doi.org/10.3390/math9121367

    Article  Google Scholar 

  20. Lenard, J.G.: 9 - tribology. In: Lenard, J.G. (ed.) Primer on Flat Rolling, 2nd edn, pp. 193–266. Elsevier, Oxford (2014). https://doi.org/10.1016/B978-0-08-099418-5.00009-3

  21. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 1 (2018). https://doi.org/10.1109/TKDE.2018.2876857

  22. Montiel, J., et al.: River: machine learning for streaming data in python (2021). https://github.com/online-ml/river

  23. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7. https://www.sciencedirect.com/science/article/pii/0377042787901257

  24. Rusnák, J., Malega, P., Svetlík, J., Rudy, V., Šmajda, N.: The research of the rolling speed influence on the mechanism of strip breaks in the steel rolling process. Materials 13(16), 3509 (2020). https://doi.org/10.3390/ma13163509

    Article  Google Scholar 

  25. Tan, S.C., Ting, K.M., Liu, T.F.: Fast anomaly detection for streaming data. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 2, pp. 1511–1516. AAAI Press (2011)

    Google Scholar 

  26. Yin, C., Zhang, S., Yin, Z., Wang, J.: Anomaly detection model based on data stream clustering. Clust. Comput. 22(1), 1729–1738 (2017). https://doi.org/10.1007/s10586-017-1066-2

    Article  Google Scholar 

Download references

Acknowledgements

Project XPM is supported by the National Science Centre, Poland (2020/02/Y/ST6/00070), under CHIST-ERA IV programme, which has received funding from the EU Horizon 2020 Research and Innovation Programme, under Grant Agreement no 857925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Jakubowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jakubowski, J., Stanisz, P., Bobek, S., Nalepa, G.J. (2023). Towards Online Anomaly Detection in Steel Manufacturing Process. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics