Skip to main content

Xenobiotics in the Urban Water Cycle

  • Chapter
  • First Online:
Xenobiotics in Urban Ecosystems

Abstract

Xenobiotics in urban water are an indicator substance of anthropogenic impact on urban water systems. The most common xenobiotics reported in urban water system are xenobiotics in personal care products, industrial products, pesticide formulations, heavy metals, petroleum products, perfluorinated compounds, etc. These xenobiotics are highly toxic in nature and bioaccumulate in the human body and other biotic forms. The highest media transfer of xenobiotics to urban water is from household waste/wastewater, which is followed by wastes from construction and agricultural activities, vehicular emissions, and industrial discharges. Xenobiotics in urban water are one of the major contributors for xenobiotic contamination of surface water, groundwater, and even soil. Hence, there is a need for assessing the different sources, types, concentration, and destiny of xenobiotics in urban water cycle for suggesting a proper mitigation measures. This chapter explores the various sources of xenobiotics in water cycle and its types, concentration, and destiny in the urban water cycle. This chapter discusses the source and translocation of xenobiotics in urban water cycle under the different categories of xenobiotics like pharmaceutical and personal care products, pesticides, petroleum hydrocarbons, polychlorinated biphenyls, and other xenobiotics, such as perfluorinated compounds, brominated flame retardants (BFRs), phthalates, perfluorinated compounds (PFCs), benzophenones, and some phenols (such as bisphenol A and parabens). This chapter also explores the toxicological effect of xenobiotics and finally the future research prospective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelsalam NA, Ramadan AT, ElRakaiby MT, Aziz RK (2020) Toxicomicrobiomics: the human microbiome vs. pharmaceutical, dietary, and environmental xenobiotics. Front Pharmacol 11:390

    Article  CAS  Google Scholar 

  • Abessa DMS, Rachid BRF, Zaroni LP, Gasparro MR, Pinto YA, Bíceg MC, Hortellan MA, Sarkis JES, Muniz P, Moreira LB, Sousa ECPM (2019) Natural factors and chemical contamination control the structure of macrobenthic communities in the Santos Estuarine System (SP, Brazil).Commu Ecol 20(2):121–137

    Google Scholar 

  • Abudayyak M, Oztas E, Ozhan G (2021) Assessment of perfluorooctanoic acid toxicity in pancreatic cells. Toxicol in Vitro 72:105077

    Google Scholar 

  • Adekunle AS, Oyekunle JA, Ojo OS, Maxakato NW, Olutona GO, Obisesan OR (2017) Determination of polycyclic aromatic hydrocarbon levels of groundwater in Ife north local government area of Osun state, Nigeria. Toxicol Rep 4:39–48

    Article  CAS  Google Scholar 

  • Álvarez-Ruiz R, Picó Y, Campo J (2021) Bioaccumulation of emerging contaminants in mussel (Mytilus galloprovincialis): influence of microplastics. Sci Total Environ 796:149006

    Article  Google Scholar 

  • Alves RN, Maulvault AL, Barbosa VL et al (2017) Preliminary assessment on the bioaccessibility of contaminants of emerging concern in raw and cooked seafood. Food Chem Toxicol 104:69–78

    Article  CAS  Google Scholar 

  • Andrews DQ, Hayes J, Stoiber T, Brewer B, Campbell C, Naidenko OV (2021) Identification of point source dischargers of per- and polyfluoroalkyl substances in the United States. AWWA Water Sci 3(5)

    Google Scholar 

  • Archer E, Petrie B, Kasprzyk-Hordern B, Wolfaardt GM (2017) The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 174:437–446

    Article  CAS  Google Scholar 

  • Axmon A, Axelsson J, Jakobsson K, Lindh CH, Jönsson BAG (2014) Time trends between 1987 and 2007 for perfluoroalkyl acids in plasma from Swedish women. Chemosphere 102:61–67

    Article  CAS  Google Scholar 

  • Baker DR, Kasprzyk-Hordern B (2013) Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments. Sci Total Environ 454–455(44):442–456

    Article  Google Scholar 

  • Balasubramani A, Howell NL, Rifai HS (2014) Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: concentrations, congener profiles, and partitioning onto particulates and organic carbon. Sci Total Environ 473–474:702–713

    Article  Google Scholar 

  • Barbo N, Stoiber T, Naidenko OV, Andrews DQ (2023) Locally caught freshwater fish across the United States are likely a significant source of exposure to PFOS and other perfluorinated compounds. Environ Res 220:115165

    Article  CAS  Google Scholar 

  • Bartell SM, Vieira VM (2021) Critical review on PFOA, kidney cancer, and testicular cancer. J Air Waste Manage Assoc 71(6):663–679

    Article  CAS  Google Scholar 

  • Blair BD, Crago JP, Hedman CJ, Magruder C, Royer LS, Treguer RFJ, Klaper RD (2013) Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Sci Total Environ 444C:515–521

    Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532. http://dx.doi.org/10.1016/j.chemosphere.2010.11.018

  • Bridges B (2002) Fragrance: emerging health and environmental concerns. Flavour Fragr J 17(5):361–371

    Article  CAS  Google Scholar 

  • Castiglioni S, Davoli E, Riva F, Palmiotto M, Camporini P, Manenti A, Zuccato E (2018) Mass balance of emerging contaminants in the water cycle of a highly urbanized and industrialized area of Italy. Water Res 131:287–298

    Article  CAS  Google Scholar 

  • Costa G, Sartori S, Consonni D (2009) Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med 51(3):364–372

    Article  CAS  Google Scholar 

  • Cristale J, Katsoyiannis A, Chen CE, Jones KC, Lacorte S (2013) Assessment of flame retardants in river water using a ceramic dosimeter passive sampler. Environ Pollut 172:163–169

    Article  CAS  Google Scholar 

  • de Wit Cynthia A (2002) An overview of brominated flame retardants in the environment. Chemosphere 46(5):583–624

    Article  Google Scholar 

  • Deka J, Sarma KP, Gupta N, Ahmed MS, Mazumder MJ, Hoque RR (2023) Polycyclic aromatic hydrocarbons in groundwater of oil-rich regions of upper Brahmaputra Valley, India: linkages of colloidal transport. Arab J Geosci 16(1):66

    Article  CAS  Google Scholar 

  • Dhuldhaj UP, Singh R, Singh VK (2023) Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. Environ Sci Pollut Res 30:9243–9270. https://doi.org/10.1007/s11356-022-24381-y

    Article  CAS  Google Scholar 

  • Dong GH, Tung KY, Tsai CH, Liu MM, Wang D, Liu W et al (2013) Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a casecontrol study of Taiwanese children. Environ Health Perspect 121(4):507–513

    Article  Google Scholar 

  • Donner E, Eriksson E, Holten-Lützhøft HC, Scholes L, Revitt M, Ledin A (2010) Identifying and classifying the sources and uses of xenobiotics in urban environments. In: Xenobiotics in the urban water cycle: mass flows, environmental processes, mitigation and treatment strategies. Springer, Dordrecht, pp 27–50

    Chapter  Google Scholar 

  • Dreyer A, Minkos A (2023) Polychlorinated biphenyls (PCB) and polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/F) in ambient air and deposition in the German background. Environ Pollut 316(1):120511

    Article  CAS  Google Scholar 

  • Dueñas-Moreno J, Mora A, Cervantes-Avilés P, Mahlknecht J (2022) Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate – A review. Environ Int 170:107550

    Google Scholar 

  • Egodawatta P, Ziyath AM, Goonetilleke A (2013) Characterising metal build-up on urban road surfaces. Environ Pollut 176:87–91

    Article  CAS  Google Scholar 

  • Fairley KJ, Purdy R, Kearns S, Anderson SE, Meade B (2007) Exposure to the immunosuppressant, perfluorooctanoic acid, enhances the murine IgE and airway hyperreactivity response to ovalbumin. Toxicol Sci 97(2):375–383

    Article  CAS  Google Scholar 

  • Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM (2021) Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem 40:606–630

    Article  CAS  Google Scholar 

  • Gao D, Li Z, Wen Z, Ren N (2014) Occurrence and fate of phthalate esters in fullscale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 95:24–32

    Article  CAS  Google Scholar 

  • Gicevic A, Hindija L, Karačić A (2020) Toxicity of azo dyes in pharmaceutical industry. In: Badnjevic A, Škrbić R, Gurbeta Pokvić L (eds) CMBEBIH 2019. IFMBE Proceedings. Springer, Cham

    Google Scholar 

  • Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, Trier X, Wang Z (2020) An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ Sci: Processes Impacts 22(12):2345–2373

    Google Scholar 

  • Greeshma O, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444. https://doi.org/10.1007/s11157-013-9320-4

  • Guerra P, Kim M, Shah A, Alaee M, Smyth SA (2014) Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci Total Environ 473–474:235–243

    Article  Google Scholar 

  • Hawash HB, Moneer AA, Galhoum AA, Elgarahy AM, Mohamed WAA, Samy M, El-Seedi HR, Gaballah MS, Mubarak MF, Attia NF (2023) Occurrence and spatial distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic environment, their characteristics, and adopted legislations. J Water Process Eng 52:103490

    Article  Google Scholar 

  • Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM (2010) Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environ Health Perspect 118:1762–1767

    Google Scholar 

  • Hu M, Li J, Zhang B, Cui QL, Wei S, Yu HX (2014) Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China. Mar Pollut Bull 86:569–574

    Article  CAS  Google Scholar 

  • Jacob G, Wiberg K, Ribeli E, Nguyen MA, Josefsson S, Ahrens L (2018) Screening of organic flame retardants in Swedish river water. Sci Total Environ 625:1046–1055

    Article  Google Scholar 

  • Janneh M, Qu C, Zhang Y, Xing X, Nkwazema O, Nyihirani F, Qi S (2023) Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in agricultural and dumpsite soils in Sierra Leone. RSC Adv 13(11):7102–7016

    Article  CAS  Google Scholar 

  • Jiang W, Luo Y, Conkle JL, Li J, Gan J (2016) Pesticides on residential outdoor surfaces: environmental impacts and aquatic toxicity. Pest Manag Sci 72:1411–1420

    Article  CAS  Google Scholar 

  • Jurado A, Vázquez-Suñé E, Pujades E (2021) Urban groundwater contamination by non-steroidal anti-inflammatory drugs. Water 13(5):720

    Article  CAS  Google Scholar 

  • Kannan K, Reiner JL, Yun SH, Perrotta EE, Tao L, Johnson-Restrepo B, Rodan BD (2005) Polycyclic musk compounds in higher trophic level aquatic organisms and humans from the United States. Chemosphere 61(5):693–700

    Google Scholar 

  • Karyab H, Yunesian M, Nasseri S, Mahvi AH, Ahmadkhaniha R, Rastkari N, Nabizadeh R (2013) Polycyclic aromatic hydrocarbons in drinking water of Tehran, Iran. J Environ Health Sci Eng 11:25

    Article  Google Scholar 

  • Kaushik CP, Sharma HR, Kaushik A (2012) Organochlorine pesticide residues in drinking water in the rural areas of Haryana, India. Environ Monit Assess 184:103–112

    Article  CAS  Google Scholar 

  • Khan MU, Li J, Zhang G, Malik RN (2016) First insight into the levels and distribution of flame retardants in potable water in Pakistan: an underestimated problem with an associated health risk diagnosis. Sci Total Environ 565:346–359

    Article  CAS  Google Scholar 

  • Kumar D, Chopra S (2020) Xenobiotic compounds in the environment: their fate, transport and removal. In: Proceedings of the 3rd national conference on medical instrumentation, biomaterials and signal processing (NCMBS-20), Sonepat, India. 26–27 February 2020, pp 96–102

    Google Scholar 

  • La Farre M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27(11):991–1007

    Article  CAS  Google Scholar 

  • Larsson E, Al-Hamimi S, Jönsson JAÅ (2014) Behaviour of nonsteroidal anti-inflammatory drugs and eight of their metabolites during wastewater treatment studied by hollow fibre liquid phase microextraction and liquid chromatography mass spectrometry. Sci Total Environ 485–486(3):300–308

    Article  Google Scholar 

  • Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J et al (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67(6):2089–2100

    Article  Google Scholar 

  • Li YL, Kuan CF, Hsu SW, Chen CH, Kuan HC, Lee FM, Yip MC, Chiang CL (2012) Preparation, thermal stability and flame-retardant properties of halogen-free polypropylene composites. High Perform Polym 24:478–487

    Article  Google Scholar 

  • Liu J-L, Wong M-H (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224. https://doi.org/10.1016/j.envint.2013.06.012. Epub 2013 Jul 6

  • Liu A, Hong N, Zhu P, Guan Y (2019) Characterizing petroleum hydrocarbons deposited on road surfaces in urban environments. Sci Total Environ 653(25):589–596

    Article  CAS  Google Scholar 

  • Lozano I, Perez-Guzman CJ, Mora A, Mahlknecht J, Aguilar CL, Cervantes-Aviles P (2022) Pharmaceuticals and personal care products in water streams: occurrence, detection, and removal by electrochemical advanced oxidation processes. Sci Total Environ 827(25):1–18

    Google Scholar 

  • Lu H, Zhang H, Gao J, Li Z, Bao S, Chen X, Wang Y, Ge R, Ye L (2019) Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat. Environ Pollut 250:206–215

    Google Scholar 

  • Madikizela LM, Chimuka L (2017) Simultaneous determination of naproxen, ibuprofen and diclofenac in wastewater using solid-phase extraction with high performance liquid chromatography. Water SA 43(2):264–274

    Article  CAS  Google Scholar 

  • Manjarres-López DP, Soledad Andrades M, Sánchez-González S, Sonia Rodríguez-Cruz M, Sánchez-Martín MJ, Herrero-Hernández E (2021) Assessment of pesticide residues in waters and soils of a vineyard region and its temporal evolution. Environ Pollut 284:117463

    Article  Google Scholar 

  • Marklund A, Andersson B, Haglund P (2005) Organophosphate flame retardants and plasticizers in Swedish sewage treatment plants. Environ Sci Technol 39:7423–7429

    Article  CAS  Google Scholar 

  • Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS (2010) Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the US National Health and Nutrition Examination Survey. Environ Health Perspect 118:686–692

    Article  CAS  Google Scholar 

  • Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614

    Google Scholar 

  • Montuori P, De Rosa E, Sarnacchiaro P, Di Duca F, Provvisiero DP, Nardone A, Triassi M (2020) Polychlorinated biphenyls and organochlorine pesticides in water and sediment from Volturno River, Southern Italy: occurrence, distribution and risk assessment. Environ Sci Eur 32:123

    Article  CAS  Google Scholar 

  • Nelson JW, Hatch EE, Webster TF (2010) Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general US population. Environ Health Perspect 118(2):197–202

    Article  CAS  Google Scholar 

  • Net S, Dumoulin D, El-Osmani R, Rabodonirina S, Ouddane B (2014) Case study of PAHs, Me-PAHs, PCBs, phthalates and pesticides contamination in the Somme River water, France. Int J Environ Res 8(4):1159–1170

    Google Scholar 

  • Nguyen TV, Reinhard M, Chen H, Gin KY (2016) Fate and transport of perfluoro-and polyfluoroalkyl substances including perfluorooctane sulfonamides in a managed urban water body. Environ Sci Pollut Res 23:10382–10392

    Article  CAS  Google Scholar 

  • Okoye CO, Okeke ES, Okoye KC, Echude D, Andong FA, Chukwudozie KI, Okoye HU, Ezeonyejiaku CD (2022) Occurrence and fate of pharmaceuticals, personal care products (PPCPs) and pesticides in African water systems: a need for timely intervention. Heylion 8(3):1–10

    Google Scholar 

  • Oluwole AO, Omotola EO, Olatunji OS (2020) Pharmaceuticals and personal care products in water and wastewater: a review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation. BMC Chem 14:62

    Article  CAS  Google Scholar 

  • Othman N, Ismail Z, Selamat MI, Sheikh Abdul Kadir SH, Shibraumalisi NA (2022) A review of polychlorinated biphenyls (PCBs) pollution in the air: where and how much are we exposed to? Int J Environ Res Public Health 19(21):13923

    Article  CAS  Google Scholar 

  • Pal A, He Y, Jekel M, Reinhard M, Gin KYH (2014) Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ Int 71:46–62

    Article  CAS  Google Scholar 

  • Qian Y, Jia X, Ding T, Yang M, Yang B, Li J (2021) Occurrence and removal of bisphenol analogues in wastewater treatment plants and activated sludge bioreactor. Sci Total Environ 758:143606

    Google Scholar 

  • Reemtsma T, Weiss S, Mueller J, Petrovicć M, Gonzaález S, Barceloó D, Ventura F, Knepper TP (2006) Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol 40:5451–5458

    Article  CAS  Google Scholar 

  • Roberts J, Kumar A, Du J, Hepplewhite C, Ellis DJ, Christy AG, Beavis SG (2016) Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci Total Environ 541(15):1625–1637

    Google Scholar 

  • Sablayrolles C, Breton A, Vialle C, Vignoles C, Montréjaud-Vignoles M (2011) Priority organic pollutants in the urban water cycle Toulouse, France. Water Sci Technol 64(3):541–556

    Google Scholar 

  • Schneider RJ (2008) Plant uptake of pharmaceuticals from soil: determined by ELISA. In: Aga D (ed) Fate of pharmaceuticals in the environment and in water treatment systems. CRC Press, 181 pp

    Google Scholar 

  • Singh VK, Singh R, Kumar A, Bhadouria R, Pandey S (2021a) Sewage wastewater and sludge as source of traditional and emerging contaminants in agroecosystems. In: Singh VK, Singh R, Lichtfouse E (eds) Sustainable agriculture reviews, vol 50. Springer, Cham, pp 35–59. https://doi.org/10.1007/978-3-030-63249-6_2

    Chapter  Google Scholar 

  • Singh VK, Singh R, Kumar A, Bhadouria R, Singh P, Notarte KI (2021b) Antibiotics and antibiotic resistance genes in agroecosystems as emerging contaminants. In: Singh VK, Singh R, Lichtfouse E (eds) Sustainable agriculture reviews, vol 50. Springer, Cham, pp 177–210. https://doi.org/10.1007/978-3-030-63249-6_7

    Chapter  Google Scholar 

  • Steenland K, Winquist A (2021) PFAS and cancer, a scoping review of the epidemiologic evidence.Environ Res 194:110690. https://doi.org/10.1016/j.envres.2020.110690. Epub 2020 Dec 30

  • Štefanac T, Grgas D, Landeka Dragičević T (2021) Xenobiotics—division and methods of detection: a review. J Xenobiot 11(4):130–141. https://doi.org/10.3390/jox11040009

    Article  CAS  Google Scholar 

  • Stefano PHP, Roisenberg A, D’Anna Acayaba R, Roque AP, Bandoria DR, Soares A, Montagner CC (2023) Occurrence and distribution of per-and polyfluoroalkyl substances (PFAS) in surface and groundwaters in an urbanized and agricultural area, Southern Brazil. Environ Sci Pollut Res Int 30(3):6159–6169. https://doi.org/10.1007/s11356-022-22603-x

  • Subedi B, Balakrishna K, Joshua DI, Kannan K (2017) Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 167:429–437

    Article  CAS  Google Scholar 

  • Sunantha G, Vasudevan N (2016) Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water – Tamil Nadu, India. Mar Pollut Bull 109(1):612–618

    Article  CAS  Google Scholar 

  • Ternes TA, Joss A, Siegrist H (2004) Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. ACS Publications, Washington, DC

    Google Scholar 

  • Tewari S, Jindal R, Kho YL, Eo S, Choi K (2013) Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks. Chemosphere 91:697–704

    Google Scholar 

  • Togola A, Budzinski H (2008) Multi-residue analysis of pharmaceutical compounds in aqueous 791 samples. J Chromatogr A 1177:150–158. https://doi.org/10.1016/J.CHROMA.2007.10.105

    Article  CAS  Google Scholar 

  • Tran HT, Lin C, Bui X-T, Nguyen MK, Cao NDT, Mukhtar H, Hoang HG, Varjani S, Ngo HH, Nghiem LD (2022) Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. Bioresour Technol 344:126–249

    Google Scholar 

  • Tripathi S, Srivastava P, Devi RS, Bhadouria R (2020) Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In: Vara Prasad MN (ed) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Amsterdam, pp 25–54

    Chapter  Google Scholar 

  • USEPA (2021) USEPA 40 CFR Part 141 [EPA–HQ–OW–2018–0594; FRL–7251–01–OW] Drinking Water Contaminant Candidate List 5—Draft. Federal Register, vol 86, no. 135 / Monday, July 19, 2021 / Proposed Rules

    Google Scholar 

  • USEPA 2009 EPA 816-F-09-004 (2009) National primary drinking water regulations. Available at: http://www.epa.gov/ogwdw/consumer/pdf/mcl.pdf

  • Vasudevan N, Greeshma O (2017) Pesticides contamination in the environment: toxicological effects, and biodegradation and bioremediation mechanisms for environmental safety. In: Environmental pollutants and their bioremediation approaches. CRC Press, pp 57–102. https://doi.org/10.1201/9781315173351-4

    Chapter  Google Scholar 

  • Wang X, Bai Y, Tang C, Cao X, Chang F, Chen L (2018) Impact of perfluorooctane sulfonate on reproductive ability of female mice through suppression of estrogen receptor α-activated kisspeptin neurons. Toxicol Sci 165:475–486

    Google Scholar 

  • Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H (2021) Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: a review. Sci Total Environ 788:147819

    Article  CAS  Google Scholar 

  • Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E (2022) Human health risk assessment of bisphenol A (BPA) through meat products. Environ Res 213:113734

    Google Scholar 

  • Wang C, Zhou S, Wu S, Song J, Shi Y, Li B, Chen H (2023a) Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China. Water Sci Technol 76(8):2150–2157

    Article  Google Scholar 

  • Wang Q, Yan S, Chang C, Qu C, Tian Y, Song J, Guo J (2023b) Occurrence, potential risk assessment, and source apportionment of polychlorinated biphenyls in water from Beiluo River water. Water 15:459

    Article  CAS  Google Scholar 

  • Zhang X, Starner K, Goh KS, Gill S (2012) Analysis of diazinon agricultural use in regions of frequent surface water detections in California, USA. Bull Environ Contam Toxicol 88:333–337

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang L, Huang Z, Li Y, Li J, Wu N, He J, Zhang Z, Liu Y, Niu Z (2019a) Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China: composition, distribution and influencing factors. Ecotoxicol Environ Saf 177:108–116

    Article  CAS  Google Scholar 

  • Zhang X, Yang Y, Zhang J, Yang Y, Shen F, Shen J, Shao B (2019b) Determination of emerging chlorinated by-products of diazepam in drinking water. Chemosphere 218:223–231. https://doi.org/10.1016/j.chemosphere.2018.11.076

    Article  CAS  Google Scholar 

  • Zhao H, Yin C, Chen M, Wang W (2017) Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China. Water Sci Technol 76(8):2150–2157

    Article  Google Scholar 

  • Zhao YY, Gu WW, Li Y (2018) Molecular design of 1,3,5,7-TetraCN derivatives with reduced bioconcentration using 3D-QSAR modelling, full factorial design, and molecular docking. J Mol Graph Model 84:197–214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greeshma Odukkathil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odukkathil, G., Murugan, K., Lambodharan, D.K.C., Vasudevan, N. (2023). Xenobiotics in the Urban Water Cycle. In: Singh, R., Singh, P., Tripathi, S., Chandra, K.K., Bhadouria, R. (eds) Xenobiotics in Urban Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-031-35775-6_2

Download citation

Publish with us

Policies and ethics