Skip to main content

History of Tinnitus

  • Chapter
  • First Online:
Textbook of Tinnitus

Abstract

Tinnitus is as old as humanity. The first written record of tinnitus as a medical condition comes from Mesopotamia in the seventh CBC. Tinnitus was still considered a punishment from the Gods and treatment consisted of charms. This changed with Hippocrates, in the fifth CBC who believed diseases were caused naturally and provided a brain-based explanation for tinnitus, as part of a constellation of symptoms, typical for infections. Several physicians and scientists proposed treatments, consisting of diet and herbal medicine, all of which seem to have an anti-inflammatory, anti-infectious effect and, being antioxidants, were neuroprotective. Later, sound therapy was added and opioids, targeting the tinnitus-associated suffering. After the advances made in the second century AD, the centre of medical science shifted to Byzantium, with Alexander de Tralles in the sixth century proposing tinnitus as the result of a raised irritability of the auditory sense. The Islamic golden age, between the eighth and fourteenth centuries, moves the centre of medicine to the Near East, North Africa, and Spain. Avicenna in the tenth century relates tinnitus to a hangover, trauma, or medication. Yet, treatments and explanations largely remained unchanged. The first cadaveric dissections in Italy during the Renaissance in the fifteenth and sixteenth centuries increased anatomical knowledge dramatically, yet, this detailed anatomical knowledge did not lead to novel insights nor treatments. In the Renaissance, Paracelsus claimed that not the illustrious ancients were to be followed, but nature itself. He was the first to describe that noise trauma like riffles or bells could generate tinnitus. His treatment added scarifications to the ear and venesection under the tongue. In the sixteenth century, the French physician Jean Fernel was the first to propose that deafness, tinnitus, and pain have a common origin, a very prescient insight. The scientific revolution in the seventeenth century with Descartes and Du Verney added a mechanistic auditory nerve and brain-centred explanation for tinnitus. In the early eighteenth century, Rivinus and Cotugno described tinnitus caused by convulsive contractions of the Eustachian muscle or stapedial muscle. The nineteenth century saw the birth of science as a profession, and Itard differentiated between true (objective) and false (subjective) tinnitus based on carotid compression. He further distinguished between idiopathic, based on noise trauma, and symptomatic false tinnitus, associated with other diseases. The German otologists classified tinnitus in detail and the first journal paper dedicated exclusively to tinnitus was published in 1841 in Germany. In the twentieth century, new audiological techniques permitted to describe frequency and loudness matching, as well as masking procedures, and in the twenty-first century novel brain imaging techniques identified many of the brain structures involved in the generation of tinnitus and its associated suffering. Yet, no treatment has emerged, based on this detailed knowledge, that can successfully treat tinnitus and tinnitus disorder.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephens SD. The treatment of tinnitus--a historical perspective. J Laryngol Otol. 1984;98:963–72. https://doi.org/10.1017/s0022215100147802.

    Article  CAS  PubMed  Google Scholar 

  2. Dietrich S. Earliest historic reference of ‘tinnitus’ is controversial. J Laryngol Otol. 2004;118:487–8. https://doi.org/10.1258/0022215041615182.

    Article  CAS  PubMed  Google Scholar 

  3. Feldmann H. Tinnitus: diagnosis and treatment. In: Shulman A, et al, editors. Lea and Febiger, 1991. p. 3–37.

    Google Scholar 

  4. Freeman P. Searching for Sappho: the lost songs and world of the first woman poet. W.W. Norton; 2016.

    Google Scholar 

  5. Thompson RC. Assyrian praescriptions for diseases of the ears. J R Asiat Soc. 1931;1-25:1.

    Google Scholar 

  6. Adams F. The genuine works of Hippocrates. William Woods and Company; 1891.

    Google Scholar 

  7. Maltby MT. Ancient voices on tinnitus: the pathology and treatment of tinnitus in Celsus and the Hippocratic Corpus compared and contrasted. Int Tinnitus J. 2012;17:140–5. https://doi.org/10.5935/0946-5448.20120025.

    Article  PubMed  Google Scholar 

  8. Littre E. Oeuvres completes d’Hippocrate. Bailliere; 1840.

    Google Scholar 

  9. Spencer WG. Celsus De Medicina with an English translation. William Heinemann; 1961.

    Google Scholar 

  10. Iyda JH, et al. Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Res Int. 2019;121:714–22. https://doi.org/10.1016/j.foodres.2018.12.046.

    Article  CAS  PubMed  Google Scholar 

  11. Choi SJ, Park CK, Shin DH. Protective effects of radish extract against neurotoxicity in mice and PC12 cells. J Med Food. 2020;23:523–34. https://doi.org/10.1089/jmf.2019.4563.

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, et al. Systems pharmacology analysis of synergy of TCM: an example using saffron formula. Sci Rep. 2018;8:380. https://doi.org/10.1038/s41598-017-18764-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burdock GA. Safety assessment of castoreum extract as a food ingredient. Int J Toxicol. 2007;26:51–5. https://doi.org/10.1080/10915810601120145.

    Article  CAS  PubMed  Google Scholar 

  14. Zinn MK, Bockmuhl D. Did granny know best? Evaluating the antibacterial, antifungal and antiviral efficacy of acetic acid for home care procedures. BMC Microbiol. 2020;20:265. https://doi.org/10.1186/s12866-020-01948-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agrawal KS, et al. Acetic acid dressings: finding the holy grail for infected wound management. Indian J Plast Surg. 2017;50:273–80. https://doi.org/10.4103/ijps.IJPS_245_16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tripathi S, Mazumder PM. Neuroprotective efficacy of apple cider vinegar on zinc-high fat diet-induced mono amine oxidase alteration in murine model of AD. J Am Coll Nutr. 2021;1-10:658. https://doi.org/10.1080/07315724.2021.1948933.

    Article  CAS  Google Scholar 

  17. Tripathi S, Mitra Mazumder P. Comprehensive investigations for a potential natural prophylaxis-a cellular and murine model for apple cider vinegar against hydrogen peroxide and scopolamine induced oxidative stress. Drug Dev Res. 2021;83:105. https://doi.org/10.1002/ddr.21849.

    Article  CAS  PubMed  Google Scholar 

  18. Grenier A, et al. Antioxidant, anti-inflammatory, and anti-aging potential of a Kalmia angustifolia extract and identification of some major compounds. Antioxidants (Basel). 2021;10:1373. https://doi.org/10.3390/antiox10091373.

    Article  CAS  PubMed  Google Scholar 

  19. Frankova A, et al. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus. Foodborne Pathog Dis. 2014;11:795–7. https://doi.org/10.1089/fpd.2014.1737.

    Article  CAS  PubMed  Google Scholar 

  20. Lei Z, et al. Rosehip oil promotes excisional wound healing by accelerating the phenotypic transition of macrophages. Planta Med. 2019;85:563–9. https://doi.org/10.1055/a-0725-8456.

    Article  CAS  PubMed  Google Scholar 

  21. Lin TK, Zhong L, Santiago JL. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci. 2017;19:70. https://doi.org/10.3390/ijms19010070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ayati Z, et al. Phytochemistry, traditional uses and pharmacological profile of rose hip: a review. Curr Pharm Des. 2018;24:4101–24. https://doi.org/10.2174/1381612824666181010151849.

    Article  CAS  PubMed  Google Scholar 

  23. Khan A, et al. Biological and medicinal application of Cucumis sativus Linn. - review of current status with future possibilities. J Complement Integr Med. 2021;19:843. https://doi.org/10.1515/jcim-2020-0240.

    Article  CAS  PubMed  Google Scholar 

  24. Ibrahim DS. Neuroprotective effect of Cucumis melo Var. flexuosus leaf extract on the brains of rats with streptozotocin-induced diabetes. Metab Brain Dis. 2017;32:69–75. https://doi.org/10.1007/s11011-016-9886-y.

    Article  PubMed  Google Scholar 

  25. Mykhailenko O, et al. Qualitative and quantitative analysis of Ukrainian iris species: a fresh look on their antioxidant content and biological activities. Molecules. 2020;25:4588. https://doi.org/10.3390/molecules25194588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yousefsani BS, Boozari M, Shirani K, Jamshidi A, Dadmehr M. A review on phytochemical and therapeutic potential of Iris germanica. J Pharm Pharmacol. 2021;73:611–25. https://doi.org/10.1093/jpp/rgab008.

    Article  PubMed  Google Scholar 

  27. Jones IH, Knudsen VO. Certain aspects of tinnitus, particularly treatment. Laryngoscope. 1928;14:283–4.

    Google Scholar 

  28. Yabalak E, Ibrahim F, Erdogan Eliuz EA. Natural sanitizer potential of Cuminum cyminum and applicable approach for calculation of Kovats retention index of its compounds. Int J Environ Health Res. 2021;1-12:158. https://doi.org/10.1080/09603123.2021.2011159.

    Article  CAS  Google Scholar 

  29. Yadav PK, Jaiswal A, Singh RK. In silico study on spice-derived antiviral phytochemicals against SARS-CoV-2 TMPRSS2 target. J Biomol Struct Dyn. 2021;40:1–11. https://doi.org/10.1080/07391102.2021.1965658.

    Article  CAS  Google Scholar 

  30. Barashkova AS, Sadykova VS, Salo VA, Zavriev SK, Rogozhin EA. Nigellothionins from black cumin (Nigella sativa L.) seeds demonstrate strong antifungal and cytotoxic activity. Antibiotics (Basel). 2021;10:166. https://doi.org/10.3390/antibiotics10020166.

    Article  CAS  PubMed  Google Scholar 

  31. Korinek M, et al. Anti-inflammatory and antimicrobial volatile oils: fennel and cumin inhibit neutrophilic inflammation via regulating calcium and MAPKs. Front Pharmacol. 2021;12:674095. https://doi.org/10.3389/fphar.2021.674095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarkar C, et al. Therapeutic perspectives of the black cumin component thymoquinone: a review. Food Funct. 2021;12:6167–213. https://doi.org/10.1039/d1fo00401h.

    Article  CAS  PubMed  Google Scholar 

  33. Tashkandi H. Honey in wound healing: an updated review. Open Life Sci. 2021;16:1091–100. https://doi.org/10.1515/biol-2021-0084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stompor-Goracy M, Bajek-Bil A, Machaczka M. Chrysin: perspectives on contemporary status and future possibilities as pro-health agent. Nutrients. 2021;13:2038. https://doi.org/10.3390/nu13062038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fahmy HA, Farag MA. Ongoing and potential novel trends of pomegranate fruit peel; a comprehensive review of its health benefits and future perspectives as nutraceutical. J Food Biochem. 2021;46:e14024. https://doi.org/10.1111/jfbc.14024.

    Article  CAS  PubMed  Google Scholar 

  36. Mahfooz S, Itrat M, Uddin H, Khan TN. Unani medicinal herbs as potential air disinfectants: an evidence-based review. Rev Environ Health. 2021;37:155. https://doi.org/10.1515/reveh-2021-0087.

    Article  PubMed  Google Scholar 

  37. Sharif A, Nawaz H, Rehman R, Mushtaq A, Rashid U. A review on bioactive potential of benzoin resin. Int J Chem Biochem Sci. 2016;10:106–10.

    Google Scholar 

  38. Dan B. Titus’s tinnitus. J Hist Neurosci. 2005;14:210–3.

    Article  PubMed  Google Scholar 

  39. Di Napoli M, et al. Anti-Pseudomonas aeruginosa activity of hemlock (Conium maculatum, Apiaceae) essential oil. Nat Prod Res. 2019;33:3436–40. https://doi.org/10.1080/14786419.2018.1477151.

    Article  CAS  PubMed  Google Scholar 

  40. Bowman WC, Sanghvi IS. Pharmacological actions of hemlock (Conium maculatum) alkaloids. J Pharm Pharmacol. 1963;15:1–25. https://doi.org/10.1111/j.2042-7158.1963.tb12738.x.

    Article  CAS  PubMed  Google Scholar 

  41. Hotti H, Rischer H. The killer of socrates: coniine and related alkaloids in the plant kingdom. Molecules. 2017;22(11):1962. https://doi.org/10.3390/molecules22111962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berger M, Chen Y, Bampali K, Ernst M, Maulide N. Expeditious synthesis of polyacetylenic water hemlock toxins and their effects on the major GABAA receptor isoform. Chem Commun (Camb). 2018;54:2008–11. https://doi.org/10.1039/c7cc09801d.

    Article  CAS  PubMed  Google Scholar 

  43. Arihan O, Boz M, Iskit AB, Ilhan M. Antinociceptive activity of coniine in mice. J Ethnopharmacol. 2009;125:274–8. https://doi.org/10.1016/j.jep.2009.06.032.

    Article  CAS  PubMed  Google Scholar 

  44. Dayan AD. What killed Socrates? Toxicological considerations and questions. Postgrad Med J. 2009;85:34–7. https://doi.org/10.1136/pgmj.2008.074922.

    Article  CAS  PubMed  Google Scholar 

  45. Politzer A. Geschichte der Ohrenheilkunde, vol. 1. Enke Verlag; 1907.

    Google Scholar 

  46. Fatur K. “Hexing Herbs” in ethnobotanical perspective: a historical review of the uses of anticholinergic solanaceae plants in Europe. Econ Bot. 2020;74:140–58.

    Article  Google Scholar 

  47. Josset P. Therapeutic uses of natron in ancient Egypt and the Greco-Roman world. Rev Hist Pharm (Paris). 1996;44:385–96.

    Article  CAS  PubMed  Google Scholar 

  48. Burnett C. Vocabulary of teaching and research between middle ages and renaissance, vol. 8. In: Weijers O, editor. CIVICIMA; 1995.

    Google Scholar 

  49. Alverny M-T. Renaissance and renewal in the twelfth century. In: Benson RL, Constable G, editors. Harvard University Press; 1982.

    Google Scholar 

  50. Berkey J. Encyclopedia of islam and the muslim world. In: Martin CR, editor. MacMillan Reference; 2004.

    Google Scholar 

  51. Ouzir M, Bernoussi SE, Tabyaoui M, Taghzouti K. Almond oil: a comprehensive review of chemical composition, extraction methods, preservation conditions, potential health benefits, and safety. Compr Rev Food Sci Food Saf. 2021;20:3344–87. https://doi.org/10.1111/1541-4337.12752.

    Article  CAS  PubMed  Google Scholar 

  52. Latha S, Selvamani P, Prabha T. Pharmacological uses of the plants belonging to the genus commiphora. Cardiovasc Hematol Agents Med Chem. 2021;19:101–17. https://doi.org/10.2174/1871525718666200702125558.

    Article  CAS  PubMed  Google Scholar 

  53. Marefati N, et al. The effect of Allium cepa extract on lung oxidant, antioxidant, and immunological biomarkers in ovalbumin-sensitized rats. Med Princ Pract. 2018;27:122–8. https://doi.org/10.1159/000487885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ding J, et al. Artemisia scoparia: traditional uses, active constituents and pharmacological effects. J Ethnopharmacol. 2021;273:113960. https://doi.org/10.1016/j.jep.2021.113960.

    Article  CAS  PubMed  Google Scholar 

  55. Batiha GE, et al. Bioactive compounds, pharmacological actions, and pharmacokinetics of wormwood (Artemisia absinthium). Antibiotics (Basel). 2020;9:353. https://doi.org/10.3390/antibiotics9060353.

    Article  CAS  PubMed  Google Scholar 

  56. Goldsmith JL. The crises of the late middle ages: the case of France. Fr Hist. 1995;9:417–50.

    Article  Google Scholar 

  57. Pearn J. Two medieval doctors: Gilbertus Anglicus (c1180–c1250) and John of Gaddesden (1280–1361). J Med Biogr. 2013;21:3–7.

    Article  PubMed  Google Scholar 

  58. Brockliss L. A history of the University in Europe Vol. 2: Universities in Early Modern Europe (1500–1800). In: De Ridder-Symoens H, editor. Cambridge University Press; 1992. p. 563–620; medicine p. 609–20.

    Google Scholar 

  59. Siraisi N. A history of the University in Europe Vol. 1: Universities in the Middle Ages. In: De Ridder-Symoens H, Cambridge University Press; 1992. p. 360–87.

    Google Scholar 

  60. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 1999;96:15222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Henry J. The scientific revolution and the origins of modern science, chap. 3. Palgrave; 2002.

    Google Scholar 

  62. Currathers HA. Napoleon on campaign. Pen & Sword Books Limited; 2014.

    Google Scholar 

  63. Miller DP. The story of ‘scientist: the story of a word’. Ann Sci. 2017;74:255–61. https://doi.org/10.1080/00033790.2017.1390155.

    Article  PubMed  Google Scholar 

  64. Fyfe A, McDougall-Waters J, Moxham N. 350 years of scientific periodicals. Notes Rec R Soc Lond. 2015;69:227–39. https://doi.org/10.1098/rsnr.2015.0036.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kronick DA. A history of scientific & technical periodicals: the origins and development of the scientific and technical press, 1665–1790, 2nd ed. The Scarecrow Press; 1976.

    Google Scholar 

  66. Kleinjung T, et al. Which tinnitus patients benefit from transcranial magnetic stimulation? Otolaryngol Head Neck Surg. 2007;137:589–95. https://doi.org/10.1016/j.otohns.2006.12.007.

    Article  PubMed  Google Scholar 

  67. De Ridder D, Heijneman K, Haarman B, van der Loo E. Tinnitus in vascular conflict of the eighth cranial nerve: a surgical pathophysiological approach to ABR changes. Prog Brain Res. 2007;166:401–11. https://doi.org/10.1016/S0079-6123(07)66039-7.

    Article  PubMed  Google Scholar 

  68. De Ridder D, et al. Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol. 2005;26:616–9.

    Article  PubMed  Google Scholar 

  69. Kuhn T. The structure of scientific revolutions. 3rd ed. University of Chicago Press; 1962.

    Google Scholar 

  70. Galison P. Image and logic. University of Chicago Press; 1997.

    Google Scholar 

  71. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res. 1990;8:221–54.

    Article  CAS  PubMed  Google Scholar 

  72. De Ridder D, et al. Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report. J Neurosurg. 2004;100:560–4.

    Article  PubMed  Google Scholar 

  73. Dong C, et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of chronic tinnitus: a systematic review and meta-analysis of randomized controlled trials. Biomed Res Int. 2020;2020:3141278. https://doi.org/10.1155/2020/3141278.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lefebvre-Demers M, Doyon N, Fecteau S. Non-invasive neuromodulation for tinnitus: a meta-analysis and modeling studies. Brain Stimul. 2020;14:113–28. https://doi.org/10.1016/j.brs.2020.11.014.

    Article  PubMed  Google Scholar 

  75. Liang Z, et al. Repetitive transcranial magnetic stimulation on chronic tinnitus: a systematic review and meta-analysis. BMC Psychiatry. 2020;20:547. https://doi.org/10.1186/s12888-020-02947-9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schlee W, Hartmann T, Langguth B, Weisz N. Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci. 2009;10:11. https://doi.org/10.1186/1471-2202-10-11.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schlee W, Weisz N, Bertrand O, Hartmann T, Elbert T. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS One. 2008;3:e3720. https://doi.org/10.1371/journal.pone.0003720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kleinjung T, et al. Combined temporal and prefrontal transcranial magnetic stimulation for tinnitus treatment: a pilot study. Otolaryngol Head Neck Surg. 2008;138:497–501. https://doi.org/10.1016/j.otohns.2007.12.022.

    Article  PubMed  Google Scholar 

  79. De Ridder D, Vanneste S. Multitarget surgical neuromodulation: combined C2 and auditory cortex implantation for tinnitus. Neurosci Lett. 2015;591:202–6. https://doi.org/10.1016/j.neulet.2015.02.034.

    Article  CAS  PubMed  Google Scholar 

  80. Rauschecker JP, Leaver AM, Muhlau M. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron. 2010;66:819–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev. 2021;130:125–46. https://doi.org/10.1016/j.neubiorev.2021.08.013.

    Article  PubMed  Google Scholar 

  82. De Ridder D, Vanneste S. The Bayesian brain in imbalance: medial, lateral and descending pathways in tinnitus and pain: a perspective. Prog Brain Res. 2021;262:309–34. https://doi.org/10.1016/bs.pbr.2020.07.012.

    Article  PubMed  Google Scholar 

  83. Vanneste S, De Ridder D. Chronic pain as a brain imbalance between pain input and pain suppression. Brain Commun. 2021;3:fcab014. https://doi.org/10.1093/braincomms/fcab014.

    Article  PubMed  PubMed Central  Google Scholar 

  84. De Ridder D, Joos K, Vanneste S. The enigma of the tinnitus-free dream state in a Bayesian world. Neural Plast. 2014;2014:612147. https://doi.org/10.1155/2014/612147.

    Article  PubMed  PubMed Central  Google Scholar 

  85. De Ridder D, Vanneste S, Freeman W. The Bayesian brain: phantom percepts resolve sensory uncertainty. Neurosci Biobehav Rev. 2014;44C:4–15. https://doi.org/10.1016/j.neubiorev.2012.04.001.

    Article  Google Scholar 

  86. Song JJ, et al. The balance between Bayesian inference and default mode determines the generation of tinnitus from decreased auditory input: a volume entropy-based study. Hum Brain Mapp. 2021;42:4059. https://doi.org/10.1002/hbm.25539.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vanneste S, De Ridder D. Deafferentation-based pathophysiological differences in phantom sound: tinnitus with and without hearing loss. NeuroImage. 2016;129:80–94. https://doi.org/10.1016/j.neuroimage.2015.12.002.

    Article  PubMed  Google Scholar 

  88. Wang W, et al. Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol. 2019;17:e3000307. https://doi.org/10.1371/journal.pbio.3000307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13:533–48. https://doi.org/10.1038/nrd4334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grasek S. Explore the past to understand the present and shape the future. Soc Educ. 2008;72:367–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk De Ridder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Ridder, D., De Ridder-Symoens, H. (2024). History of Tinnitus. In: Schlee, W., Langguth, B., De Ridder, D., Vanneste, S., Kleinjung, T., Møller, A.R. (eds) Textbook of Tinnitus. Springer, Cham. https://doi.org/10.1007/978-3-031-35647-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35647-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35646-9

  • Online ISBN: 978-3-031-35647-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics