Skip to main content

The Current Status of the Surgical Management of Complex Spinal Cord Lipomas: Still Navigating the Labyrinth?

  • Chapter
  • First Online:
Spinal Dysraphic Malformations

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 47))

  • 288 Accesses

Abstract

This review summarises the classification, anatomy and embryogenesis of complex spinal cord lipomas and describes in some detail the technique of total lipoma resection and radical reconstruction of the affected neural placode. Its specific mission is to tackle two main issues surrounding the management of complex dysraphic lipomas: whether total resection confers better long-term benefits than partial resection and whether total resection does better than conservative treatment, i.e. no surgery, for asymptomatic lipomas. Accordingly, the 24-year progression-free survival data of the senior author and colleagues’ series of over 300 cases of total resection are compared with historical data from multiple series (including our own) of partial resection, and total resection data specifically for asymptomatic lesions are compared with the two known series of non-surgical treatment of equivalent patients. These comparisons so far amply support the author’s recommendation of total resection for most complex lipomas, with or without symptoms. The notable exception is the asymptomatic chaotic lipoma, whose peculiar anatomical relationship with the neural tissue defies even our aggressive surgical approach, and consequently projects worse results (admittedly of small number of cases) than for the other two lipoma subtypes of dorsal and transitional lesions. Prophylactic resection of asymptomatic chaotic lipomas is therefore not currently endorsed. We have also recently found that some dorsal lipomas with clear outline of the conus on preoperative imaging had a significantly better long-term prognosis of preserving neurourological functions without surgery. Whether this subset of lipomas should be managed conservatively until symptoms arise is now an open question awaiting a longer follow-up of a larger cohort of such patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term neural placode in lipoma is borrowed from the main neural core of an open neural tube defect or ONTD, to emphasise its similar “neural” nature once the lipoma is removed. The synonymous usage of the term in lipoma and ONTD is logical if one compares the embryogenesis of the two entities (see below): the “placode” in each case represents the original embryonic neural plate blighted in its final completing stage: having been invaded by paraxial mesenchyme in lipoma, and thwarted in its midline dorsal fusion in ONTD.

References

  1. Pang D. Surgical management of complex spinal cord lipomas: how, why, and when to operate. A review. J Neurosurg Pediatr. 2019;23:537–56. Journal of Neurosurgery Pediatrics 75th Anniversary Invited Review Article.

    Article  PubMed  Google Scholar 

  2. Pang D. Surgical management of complex spinal cord lipomas: a new perspective. J Korean Neurosurg Soc. 2020;63(3):279–313.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kulkarni HV, Pierre-Kahn A, Zerah M. Conservative management of asymptomatic spinal lipomas of the conus. Neurosurgery. 2004;54:868–75.

    Article  PubMed  Google Scholar 

  4. Wykes V, Desai D, Thompson DNP. Asymptomatic lumbosacral lipomas—a natural history study. Childs Nerv Syst. 2012;28:1731–9.

    Article  PubMed  Google Scholar 

  5. Arai H, Sato K, Wachi A. Surgical management in 81 patients with congenital intraspinal lipoma. Childs Nerv Syst. 1992;8:171.

    Google Scholar 

  6. Byrne RW, Hayes EA, Georg TM, McLone DG. Operative resection of 100 spinal lipomas in infants less than 1 year of age. Pediatr Neurosurg. 1995;23:182–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman HJ, Taecholarn C, Hendrick EB, Humphreys RP. Management of lipomyelomeningoceles. J Neurosurg. 1985;62:1–8.

    Article  CAS  PubMed  Google Scholar 

  8. James CCM, Williams J, Brock W, Kaplan GW. U HS: radical removal of lipomas of the conus and cauda equina with laser microsurgery. Neurosurgery. 1984;13:340–5.

    Article  Google Scholar 

  9. La Marca F, Grant JA, Tomita T, McLone DG. Spinal lipomas in children: outcome of 270 procedures. Pediatr Neurosurg. 1997;26:8–16.

    Article  PubMed  Google Scholar 

  10. McLone DG, Mutluer S, Naidich TP. Lipomeningoceles of the conus medullaris. In: Karger S, editor. Concepts in pediatric neurosurgery. Basel, Switzerland: Karger; 1982. p. 171–7.

    Google Scholar 

  11. Sutton LN. Lipomyelomeningocele. Neurosurg Clin N Am. 1995;6:325–38.

    Article  CAS  PubMed  Google Scholar 

  12. Dorward NL, Scatliff JH, Hayward RD. Congenital lumbosacral lipomas: pitfalls in analyzing the results of prophylactic surgery. Childs Nerv Syst. 2002;18:326–32.

    Article  PubMed  Google Scholar 

  13. Colak A, Pollack IF, Albright AL. Recurrent tethering: a common long-term problem after lipomyelomeningocele repair. Pediatr Neurosurg. 1998;29:184–90.

    Article  CAS  PubMed  Google Scholar 

  14. Pierre-Kahn A, Lacombe J, Pichon J, et al. Intraspinal lipomas with spina bifida: prognosis and treatment in 73 cases. J Neurosurg. 1986;65:756–61.

    Article  CAS  PubMed  Google Scholar 

  15. Cochrane DD, Finley C, Kestle J, Steinbok P. The patterns of late deterioration in patients with transitional lipomyelomeningocele. Eur J Pediatr Surg. 2000;10(suppl 1):13–7.

    Article  PubMed  Google Scholar 

  16. Xenos C, Sgouros S, Walsh R, Hockley A. Spinal lipomas in children. Pediatr Neurosurg. 2000;32:295–307.

    Article  CAS  PubMed  Google Scholar 

  17. Bruce DA. Schut L: spinal lipomas in infancy and childhood. Childs Brain. 1979;5:192–203.

    CAS  PubMed  Google Scholar 

  18. McLone DG, Naidich TP. Laser resection of fifty spinal lipomas. Neurosurgery. 1986;18:611–5.

    Article  CAS  PubMed  Google Scholar 

  19. Pang D, Zovickian JG, Oviedo A. Long term outcome of total and near total resection of spinal cord lipomas and radical reconstruction of the neural placode part II: outcome analysis and preoperative profiling. Neurosurgery. 2010;66:253–73.

    Article  PubMed  Google Scholar 

  20. Schoenwolf GC. Histological and ultrastructural observations of tail bud formation in the chick embryo. Anat Rec. 1979;193:131–48.

    Article  CAS  PubMed  Google Scholar 

  21. Stolke D, Zumkeller M, Seifert V. Intraspinal lipomas in infancey and childhood causing a tethered cord syndrome. Neurosurg Rev. 1988;11:59–65.

    Article  CAS  PubMed  Google Scholar 

  22. Pang D, Zovickian JG, Ovieda A. Long term outcome of total and near Total resection of spinal cord lipomas and radical reconstruction of the neural placode part I: surgical technique. Neurosurgery. 2009;65:511–29.

    Article  PubMed  Google Scholar 

  23. Brunelle F, Sebag G, Baraton J, Carteret M, Martinat P, Pierre-Kahn A. Lumbar spinal cord motion measurement with phase-contrast MR imaging in normal children and in children with spinal lipomas. Pediatr Radiol. 1996;26:265–70.

    Article  CAS  PubMed  Google Scholar 

  24. Dick EA, deBruhn R. Ultrasound of the spinal cord in children: its role. Eur Radiol. 2003;13:552–62.

    Article  CAS  PubMed  Google Scholar 

  25. Pang D, Zovickian JG, Wong ST, Hou YJ, Moes GS. Surgical treatment of complex spinal cord lipomas. Childs Nerv Syst. 2013;29(Special Annual Issue):1485.

    Article  PubMed  Google Scholar 

  26. Pierre-Kahn A, Zerah M, Renier D, Canalli G, Sainte-Rose C, Lellough-Tubiana A, Brunelle F, Le Merrer M, Giudicelli Y, Pichon J, Kleinknecht B, Nataf F. Congenital lumbosacral lipomas. Childs Nerv Syst. 1997;13:298–334.

    Article  CAS  PubMed  Google Scholar 

  27. Dias M, Pang D. Human neural embryogenesis: a description of neural morphogenesis and a review of embryonic mechanisms. In: Pang D, editor. Disorders of the pediatric spine. New York: Raven Press; 1994.

    Google Scholar 

  28. Hamilton HL, Boyd JD, Mossman HM. Human embryology. 4th ed. Baltimore: Williams & Wilkins; 1972.

    Book  Google Scholar 

  29. Kunitomo K. The development and reduction of the tail and of the caudal end of the spinal cord. Contributions to Embryology, Carnegie Institute. 1918;8:163–98.

    Google Scholar 

  30. Streeter GL. Factors involved in the formation of the filum terminalis. Am J Anat. 1919;25:1–12.

    Article  Google Scholar 

  31. Barson AJ. The vertebral level of termination of the spinal cord during normal and abnormal development. J Anat. 1970;106:489–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones PH, Love JG. Tight filum terminale. Arch Surg. 1956;73:556–66.

    Article  CAS  Google Scholar 

  33. Caldarelli M, McLone DG, Colins JA, Suwa J, Knepper PA. Vitamin a induced neural tube defects in a mouse. Concepts Pediatr Neurosurg. 1985;6:161–71.

    Google Scholar 

  34. McLone DG, Suwa J, Collins JA, Poznaski S, Knepper PA. Neurulation: biochemical and morphological studies on primary and secondary neural tube defects. Concepts Pediatr Neurosurg. 1983;4:15–29.

    Google Scholar 

  35. Marin-Padilla M. Clinical and experimental rachischisis. In: Vinken PS, Bruyn GW, editors. Handbook of clinical neurology, vol. 32. Amsterdam: North-Holland; 1978. p. 159–91.

    Google Scholar 

  36. Marin-Padilla M. Mesodermal altercations induced by hypervitaminosis A. J Embryol Exp Morpholog. 1966;15:261–9.

    CAS  Google Scholar 

  37. Marin-Padilla M. Morphogenesis of anencephaly and related malformations. Curr Top Pathol. 1970;51:145–74.

    Article  Google Scholar 

  38. Marin-Padilla M. Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci. 1981;50:29–55.

    Article  CAS  PubMed  Google Scholar 

  39. Marin-Padilla M. Morphogenesis of experimentally induced encephalocele (cranioschisis occulta). J Neurol Sci. 1980;46:83–99.

    Article  CAS  PubMed  Google Scholar 

  40. Marin-Padilla M. Notochordal-basochondrocranium relationships: abnormalities in experimentally induced axial skeletal (dysraphic) disorders. J Embryol Exp Morpholog. 1979;53:15–38.

    CAS  Google Scholar 

  41. Marin-Padilla M. The tethered cord syndrome: developmental considerations. In: Holtzmann RNN, Stein BM, editors. The tethered spinal cord. New York: Thieme; 1985. p. 3–13.

    Google Scholar 

  42. McLone DG, Knepper PA. Role of complex carbohydrates and neurulation. Pediatr Neurosci. 1986;1:2–9.

    Google Scholar 

  43. Morris-Kay GM, Crutch B. Culture of rat embryos with Β-D-xyloside: evidence of a role for proteoglycans in neurulation. J Anat. 1982;134:491–506.

    Google Scholar 

  44. O'Shea KS, Kaufmann MH. Phospholipace C-induced neural tube defects in the mouse embryo. Experientia. 1980;36:1217–9.

    Article  CAS  PubMed  Google Scholar 

  45. Toole BP. Glycosaminoglycans in morphogenesis. In: Hay E, editor. Cell biology of extracellular matrix. New York: Plenum Press; 1981. p. 229–94.

    Google Scholar 

  46. Detwiler SR, Hotzer H. The inductive and formative influence of the spinal cord upon the vertebral column. Bull Hosp Jt Dis Orthop Inst. 1954;15:114–23.

    CAS  Google Scholar 

  47. Kallen B. Early embryogenesis of central nervous system with special reference to closure defects. Dev Med Child Neurol. 1968;19(suppl):44–53.

    Google Scholar 

  48. McLone DG, Naidich TP. Spinal dysraphism: experimental and clinical. In: Holtzman RN, Stein BM, editors. The tethered spinal cord. New York: Thieme-Stratton; 1985.

    Google Scholar 

  49. Pang D. Spinal cord lipoma. In: Batjer H, Loftus C, editors. textbook of neurological surgery. Lippincott, Williams and Wilkins; 2002.

    Google Scholar 

  50. Pang D. Spinal cord lipomas. In: Pang D, editor. Disorders of the pediatric spine. New York: Raven Press; 1995. p. 175–201.

    Google Scholar 

  51. Pang D: Tethered cord syndrome, in Hoffman HJ (ed): Advances in pediatric neurosurgery. Philadelphia: Hanley and Belfus, Inc,1986: pp. 45–79.

    Google Scholar 

  52. Pang D. Total resection of complex spinal cord lipomas: how, why, and when to operate. Neurol Med Chir. 2015;55:695–721.

    Article  Google Scholar 

  53. Schoenwolf GC, Nichols DH. Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat. 1984;169:361–76.

    Article  CAS  PubMed  Google Scholar 

  54. Muller F, O'Rahilly R. The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol. 1974;176:413–30.

    Article  Google Scholar 

  55. O'Rahilly R, Meyer DB. The timing and sequence of events in the development of the human vertebral column during the embryonic period proper. Anat Embryol. 1973;157:167–76.

    Article  Google Scholar 

  56. Talwalker VC, Datsur DK. Ectopic spinal cord myelomeningocele with tethering: a clinicopathological entity. Dev Med Child Neurol. 1974;16(s32):159–60.

    Google Scholar 

  57. Pang D. Retained medullary cord in humans—late arrest of secondary neurulation. Neurosurgery. 2011;68:1500–19.

    Article  PubMed  Google Scholar 

  58. Pang D. Electrophysiological monitoring for tethered cord surgery. In: Yamada S, editor. Tethered cord syndrome. 2nd ed. New York, Stuttgart: Thieme Medical Publishers; 2010. p. 199–209.

    Google Scholar 

  59. Pang D. Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst. 2010;26:411–2.

    Article  PubMed  Google Scholar 

  60. Pang D. Use of an anal sphincter pressure monitor during operations on the sacral spinal cord and nerve roots. Neurosurgery. 1983;13:562–8.

    Article  CAS  PubMed  Google Scholar 

  61. Chapman PH, Davis KR. Surgical treatment of spinal lipomas in childhood. Pediatr Neursurg. 1993;19:267–75.

    Article  CAS  Google Scholar 

  62. Chapman PH. Comments in: Kulkarni HV, Pierre-Kahn A, Zerah M: Conservative Management of asymptomatic spinal lipomas of the conus. Neurosurgery. 2004;54:868–75.

    Article  Google Scholar 

  63. Chapman PH. Congenital intraspinal lipomas. Anatomic considerations and surgical treatment. Child’s Brain. 1982;9:37–47.

    CAS  PubMed  Google Scholar 

  64. Atala H, Sato K, Wachi A. Bladder functional changes resulting from lipomyelomeningocele repair. J Urol. 1992;148:592–5.

    Article  CAS  PubMed  Google Scholar 

  65. James CCM, Lassman LP. Diastematomyelia and the tight filum terminale. J Neurol Sci. 1970;10:193–6.

    Article  CAS  PubMed  Google Scholar 

  66. James HE, Canty TG. Human tails and associated spinal anomalies. Clin Pediatr. 1995;34:286–8.

    Article  CAS  Google Scholar 

  67. Kanev PM, Lemire RJ, Loeser JB, Berger MS. Management and long-term follow-up review of children with lipomyelomeningocele, 1952-1987. J Neurosurg. 1990;74:48–52.

    Article  Google Scholar 

  68. Koyanagi I, Iwasaki Y, Hida K, Abe H, Isu T, Akino M. Surgical treatment supposed natural history of the tethered cord with occult spinal dysraphism. Childs Nerv Syst. 1997;13:268–74.

    Article  CAS  PubMed  Google Scholar 

  69. McGuire EJ. The innervation and function of the lower urinary tract. J Neurosurg. 1986;65:278–85.

    Article  CAS  PubMed  Google Scholar 

  70. McGuire EJ, Woodside JR, Borden TA, Weiss RM. Prognostic value of urodynamic testing in myelodysplastic patients. J Urol. 1981;126:205–9.

    Article  CAS  PubMed  Google Scholar 

  71. Sathi S, Madsen JR, Bauer S, Scott RM. Effect of surgical repair on neurologic function in infants with lipomeningocele. Pediatr Neurosurg. 1993;19:256–9.

    Article  CAS  PubMed  Google Scholar 

  72. Thompson DNP, Spoor J, Schotman M, Maestic S, Craven CL, Desai D. Does conus morphology have implications for outcome in lumbosacral lipomas? Childs Nerv Syst. 2021;37:2025–31.

    Article  PubMed  Google Scholar 

  73. Hoffman HJ, Hendrick EB, Humphreys RP. The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Childs Brain. 1976;2:145–55.

    CAS  PubMed  Google Scholar 

  74. Pang D, Wilberger JE. Tethered cord syndrome in adults. J Neurosurg. 1982;57:32–47.

    Article  CAS  PubMed  Google Scholar 

  75. Cornette L, Verpoorten C, Lagae L, Plets C, Van Calenbergh F, Casaer P. Closed spinal dysraphism: a review on diagnosis and treatment in infancy. Eur J Paediatr Neurol. 1998;2:179–85.

    Article  CAS  PubMed  Google Scholar 

  76. Schut L, Bruce DA, Sutton LN. The management of the child with lipomyelomeningocele. Child Neurosurg. 1983;30:440–76.

    Google Scholar 

  77. Pang D. Commentary to the article: asymptomatic lumbosacral lipomas—a natural history study; by Wykes V, Desai D, Thompson D.N.P. Childs Nerv Syst. 2012;28:1741–2.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

The author states that he has no conflicts of interests associated with the making of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pang, D., Thompson, D.N.P. (2023). The Current Status of the Surgical Management of Complex Spinal Cord Lipomas: Still Navigating the Labyrinth?. In: Pang, D., Wang, KC. (eds) Spinal Dysraphic Malformations. Advances and Technical Standards in Neurosurgery, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-34981-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34981-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34980-5

  • Online ISBN: 978-3-031-34981-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics