Skip to main content

Abstract

Several slag-blended cement hydration models widely used in the cement research field are benchmarked in this work, with a focus on their hypothesis, assets and drawbacks. The effect of slag on the hydrating mixture and the hydration products composition and quantities is considered. Different cement hydration models are presented in this study: analytical models such as Chen & Brouwers’ and Kolani's models and generic numerical hydration models as CEMGEMS and VCCTL. Powers’ and Tennis & Jennings’ models are also used for comparison for compositions without slag-substitution. Computed results obtained with these models such as the degree of hydration and the hydration products composition and quantities are compared with experimental results found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ollivier, J.P., Vichot, A.: La durabilité des bétons. Association technique de l’industrie des liants hydrauliques (2008)

    Google Scholar 

  2. Cement Technology roadmap 2009 - Carbon emissions reductions up to 2050. World Business Council for Sustainable Developement and International Energy Agency (2009)

    Google Scholar 

  3. Chen, C., Habert, G., Bouzidi, Y., Jullien, A., Ventura, A.: LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete. Resour. Conserv. Recycl. 54(12), 1231–1240 (2010)

    Article  Google Scholar 

  4. Bentz, D.: CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package: Version 3.0. (2005)

    Google Scholar 

  5. Kulik, D.A., Winnefeld, F., Kulik, A., Miron, G.D., Lothenbach, B.: CemGEMS – an easy-to-use web application for thermodynamic modeling of cementitious materials. RILEM Tech. Lett. 6, 36–52 (2021)

    Article  Google Scholar 

  6. CemGEMS-2021–140-Supplementaryfile-1339–2–10–20210609.pdf

    Google Scholar 

  7. Chen, W.: Hydration of slag cement: theory, modeling and application. PhD Thesis, University of Twente, The Netherlands (2006)

    Google Scholar 

  8. Chen, W., Brouwers, H.J.H., Shui, Z.H.: Three-dimensional computer modeling of slag cement hydration. J. Mater. Sci. 42(23), 9595–9610 (2007)

    Article  Google Scholar 

  9. Chen, W., Brouwers, H.J.H.: The hydration of slag, Part 1: Reaction models for alkali-activated slag. J. Mater. Sci. 42(2), 428–443 (2007)

    Article  Google Scholar 

  10. Chen, W., Brouwers, H.J.H.: The hydration of slag, Part 2: Reaction models for blended cement. J. Mater. Sci. 42(2), 444–464 (2007)

    Article  Google Scholar 

  11. Kolani, B., Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., Boutillon, L., Linger, L.: Hydration of slag-blended cements. Cem. Concr. Compos. 34(9), 1009–1018 (2012)

    Article  Google Scholar 

  12. Powers, T.C.: Fundamental aspects of shrinkage of concrete. Rev. Matér. 544, 79–85 (1961)

    Google Scholar 

  13. Tennis, P.D., Jennings, H.M.: A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem. Concr. Res. 30(6), 855–863 (2000)

    Article  Google Scholar 

  14. Bullard, J.W.: VCCTL Software. NIST, Dec. 06, 2010. https://www.nist.gov/services-resources/software/vcctl-software. Accessed 09 Jun 2022

  15. Stephant, S.: Etude de l’influence de l’hydratation des laitiers sur les propriétés de transfert gazeux dans les matériaux cimentaires. PhD Thesis, Dijon, France (2015)

    Google Scholar 

  16. Merzouki, T., Bouasker, M., Houda Khalifa, N.E., Mounanga, P.: Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age. Constr. Build. Mater. 44, 368–380 (2013)

    Article  Google Scholar 

  17. Königsberger, M., Carette, J.: Validated hydration model for slag-blended cement based on calorimetry measurements. Cem. Concr. Res. 128, 105950 (2020)

    Article  Google Scholar 

  18. Kinomura, K., Ishida, T.: Enhanced hydration model of fly ash in blended cement and application of extensive modeling for continuous hydration to pozzolanic micro-pore structures. Cem. Concr. Compos. 114, 103733 (2020)

    Article  Google Scholar 

  19. Elakneswaran, Y., Owaki, E., Miyahara, S., Ogino, M., Maruya, T., Nawa, T.: Hydration study of slag-blended cement based on thermodynamic considerations. Constr. Build. Mater. 124, 615–625 (2016)

    Article  Google Scholar 

  20. Thomas, J.J., et al.: Modeling and simulation of cement hydration kinetics and microstructure development. Cem. Concr. Res. 41(12), 1257–1278 (2011)

    Article  Google Scholar 

  21. User’s Guide to PHREEQC – a Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations. https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc.v1/html/phqc_2.htm. Accessed 29 Nov 2022)

  22. Shi, H., Zhao, Y., Li, W.: Effects of temperature on the hydration characteristics of free lime. Cem. Concr. Res. 32, 789–793 (2002)

    Article  Google Scholar 

  23. Taylor, H.F.W., Mohan, K., Moir, G.K.: Analytical study of pure and extended Portland cement pastes. Part I: Pure Portland cement pastes. J. Am. Ceram. Soc. 68(12), 680–685 (1985)

    Article  Google Scholar 

  24. Liu, L., Sun, W., Ye, G., Chen, H., Qian, Z.: Estimation of the ionic diffusivity of virtual cement paste by random walk algorithm. Constr. Build. Mater. 28(1), 405–413 (2012)

    Article  Google Scholar 

  25. Bogue, T.L., Bogue, R.L.: Extinguish burnout in critical care nursing. Crit. Care Nurs. Clin. North Am. 32(3), 451–463 (2020)

    Article  Google Scholar 

  26. Taylor, H.F.W.: Modification of the Bogue calculation. Adv. Cem. Res. 2(6), 73–77 (1989)

    Article  Google Scholar 

  27. Taylor, H.F.W.: Cement Chemistry, 2nd edn. Thomas Telford, London (1997)

    Book  Google Scholar 

  28. Pietersen, H.S., Bijen, J.M.: Fly ash and slag reactivity in cements: Tem evidence and application of thermodynamic modelling. In: Goumans, J.J.J.M., van der Sloot, H.A., Aalbers, Th.G. (eds.) Studies in Environmental Science, vol. 60, pp. 949–960. Elsevier (1994)

    Google Scholar 

  29. Regourd, M., Thomassin, J.H., Baillif, P., Touray, J.C.: Study of the early hydration of Ca3SiO5 by X-ray photoelectron spectrometry. Cem. Concr. Res. 10(2), 223–230 (1980)

    Article  Google Scholar 

  30. Richardson, I.G., Groves, G.W.: Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag. J. Mater. Sci. 27(22), 6204–6212 (1992)

    Article  Google Scholar 

  31. Mensi, R., Acker, P., Attolou, A.: Séchage du béton: analyse et modélisation. Mater. Struct. 21(1), 3–12 (1988)

    Article  Google Scholar 

  32. Garboczi, E.J., Berryman, J.G.: Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations. Mech. Mater. 33(8), 455–470 (2001)

    Article  Google Scholar 

  33. Bentz, D.P., Garboczi, E.J.: A digitized simulation model for microstructural development. Ceram. Trans. 16, 211–226 (1991)

    Google Scholar 

  34. Garboczi, E.J., Bentz, D.P.: Digital simulation of the aggregate—cement paste interfacial zone in concrete. J. Mater. Res. 6(1), 196–201 (1991)

    Article  Google Scholar 

  35. Jennings, H.M., Johnson, S.K.: Simulation of microstructure development during the hydration of a cement compound. J. Am. Ceram. Soc. 69(11), 790–795 (1986)

    Article  Google Scholar 

  36. Watts, B.E., Tao, C., Ferraro, C.C., Masters, F.J.: Proficiency analysis of VCCTL results for heat of hydration and mortar cube strength. Constr. Build. Mater. 161, 606–617 (2018)

    Article  Google Scholar 

  37. Bentz, D.P.: Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cem. Concr. Compos. 28(2), 124–129 (2006)

    Article  Google Scholar 

  38. Bentz, D.P.: Capillary porosity depercolation/repercolation in hydrating cement pastes via low-temperature calorimetry measurements and CEMHYD3D modeling. J. Am. Ceram. Soc. 89(8), 2606–2611 (2006)

    Article  Google Scholar 

  39. Bentz, D.P.: Quantitative comparison of real and CEMHYD3D model microstructure using correlation functions. Cem. Concr. Res. 36(2), 259–263 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the French National Research Agency (ANR) under grant DEMCOM ANR-20-CE22–0008-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Atallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atallah, J., Ranaivomanana, H., Bignonnet, F., Bonnet, S. (2023). A Benchmarking of Slag Blended Cement Hydration Models. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-031-33211-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33211-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33210-4

  • Online ISBN: 978-3-031-33211-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics