Skip to main content

Abstract

Performance test methods intend to provide a fast, accurate and precise determination of a particular building material property and thus determine the associated material performance. In concrete, various performance tests are used to classify existing or to approve new materials, to compare concrete compositions or to determine causes of damage in existing structures. The challenge of such test methods is to accelerate natural (very slow) mechanisms to determine the material performance precisely within a short time. However, the attack on the material must not be unrealistically intensive, but must represent reality, just in fast motion. The performance tests used to demonstrate the freeze-thaw resistance of concrete employ a 3% NaCl solution, with literature data ranging from 1% to 10% showing that low concentrations can result in higher surface scaling. In this paper, mortar and concrete specimens are tested at 0, 1, 3, 6, and 9% NaCl solution following the CDF procedure (DIN CEN/TS 12390-9:2017-05). The results are discussed against the background of the existing literature and show that the damage is critically dependent on the pore system and thus also on the effect of the micro-ice lens pump. With increasing freeze-thaw exposition, the pessimum in the external damage shifts towards a de-icing salt concentration of 6%. Furthermore, a novel test methodology based on 3D-laserscanning is presented to determine scaling accurately by eliminating side effects that are typically present in current standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stark, J., Wicht, B.: Frost- und Frost-Tausalz-Widerstand von Beton. In: Dauerhaftigkeit von Beton, pp. 399–471. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35278-2_9

  2. Palecki, S.: Hochleistungsbeton unter Frost-Tau-Wechselbelastung – Schädigungs- und Transportmechanismen. Cuvillier, Göttingen, Germany (2006)

    Google Scholar 

  3. Powers, T.C., Copeland, L.E., Mann, H.M.: Capillary continuity or discontinuity in cement pastes. Portland Cement Association (1959)

    Google Scholar 

  4. Setzer, M.J.: Development of the micro-ice-lens model. In: Proceedings of the International RILEM Workshop on Frost Resistance of Concrete, pp. 133–145. RILEM Publications SARL (2002)

    Google Scholar 

  5. Zeng, Q., et al.: A study of freezing behavior of cementitious materials by poromechanical approach. Int. J. Solids Struct. 48(22–23), 3267–3273 (2011)

    Article  Google Scholar 

  6. Coussy, O., Monteiro, P.J.: Poroelastic model for concrete exposed to freezing temperatures. Cem. Concr. Res. 38(1), 40–48 (2008)

    Article  Google Scholar 

  7. Mueller, M.: Frost-Tausalz-Angriff auf Beton - Neue Erkenntnisse zum Schadensmechanismus. Bauhaus-Universität Weimar (2021)

    Google Scholar 

  8. Valenza, J.J., Scherer, G.W.: Mechanism for salt scaling. J. Am. Ceram. Soc. 89(4), 1161–1179 (2006)

    Article  Google Scholar 

  9. Lindmark, S.: Mechanisms of salt frost scaling on Portland cement-bound materials: studies and hypothesis. Division of Building Materials, LTH, Lund University, Sweden (2016)

    Google Scholar 

  10. Liu, Z., Hansen, W.: A hypothesis for salt frost scaling in cementitious materials. J. Adv. Concr. Technol. 13(9), 403–414 (2015)

    Article  Google Scholar 

  11. Fagerlund, G.: Influence of environmental factors on the frost resistance of concrete: a contribution to the BRITE/EURAM project BREU-CT92-0591. The Residual Service Life of Concrete Structures. Report TVBM 3059, Division of Building Materials, LTH, Lund University, Sweden (1994)

    Google Scholar 

  12. Verbeck, G.J., Klieger, P.: Studies of ‘salt’ scaling of concrete. Highway Res. Board Bull. 150 (1957)

    Google Scholar 

  13. Setzer, M.J., et al.: Development of a lab performance test for concrete for application in the exposure class XF2 and correlation to field. Research report. Essen and München (2006)

    Google Scholar 

  14. DIN CEN/TS 12390-9:2017-05, Prüfung von Festbeton_- Teil_9: Frost- und Frost-Tausalz-Widerstand_- Abwitterung; Deutsche Fassung CEN/TS_12390-9:2016. Beuth Verlag GmbH, Berlin, Germany (2017)

    Google Scholar 

  15. BAW Merkblatt - Frostprüfung von Beton (MFB) – Ausgabe (2012)

    Google Scholar 

  16. DIN EN 197-1:2011-11, Zement_- Teil_1: Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement; Deutsche Fassung EN_197-1:2011. Beuth Verlag GmbH, Berlin, Germany (2011)

    Google Scholar 

  17. Haynack, A., et al.: Characterization of cementitious materials exposed to freezing and thawing using 3D scans. Preprints, 2022110507 (2022)

    Google Scholar 

  18. Guo, J., et al.: Damage mechanism and modeling of concrete in freeze–thaw cycles: a review. Buildings 12(9), 1317 (2022)

    Article  Google Scholar 

  19. Qiao, C., Suraneni, P., Weiss, J.: Damage in cement pastes exposed to NaCl solutions. Constr. Build. Mater. 171, 120–127 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the German Research Foundation (DFG), project number 428338963. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Haynack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haynack, A., Schneider, A., Timothy, J.J., Kränkel, T., Gehlen, C., Thiel, C. (2023). Effect of Chloride Concentration on the Freeze-Thaw Resistance of Concrete. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-031-33187-9_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33187-9_83

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33186-2

  • Online ISBN: 978-3-031-33187-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics