Skip to main content

A Framework for Improving the Energy Efficiency and Sustainability of Collaborative Robots

  • Conference paper
  • First Online:
Proceedings of I4SDG Workshop 2023 (I4SDG 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 134))

Included in the following conference series:

  • 364 Accesses

Abstract

On a worldwide scale, industry is responsible for a large part for the overall use of energy and resources: reducing this use is included in the targets of SDG9, one of the Sustainable Development Goals drawn by the United Nations. This work aims to create a framework for better understanding, modelling, and optimizing the energy consumption of industrial robots, with specific reference to the collaborative robot UR5e. The framework comprises a real robot and its electro-dynamic model, the latter being developed on the basis of experimental tests and of data supplied by the manufacturer. The paper presents the main features of the framework, and the future work aimed at improving the accuracy of the proposed energy model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shyi-Min, L.: A review of high-efficiency motors: specification, policy, and technology. Renew. Sustain. Energy Rev. 59, 1–12 (2016)

    Article  Google Scholar 

  2. De Almeida, A., Fong, J., Brunner, C.U., Werle, R., Van Werkhoven, M.: New technology trends and policy needs in energy efficient motor systems-a major opportunity for energy and carbon savings. Renew. Sustain. Energy Rev. 115, 109384 (2019)

    Article  Google Scholar 

  3. Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R.: Path planning and trajectory planning algorithms: a general overview. In: Carbone, G., Gomez-Bravo, F. (eds.) Motion and Operation Planning of Robotic Systems. MMS, vol. 29, pp. 3–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14705-5_1

    Chapter  Google Scholar 

  4. Piazzi, A., Visioli, A.: Global minimum-time trajectory planning of mechanical manipulators using interval analysis. Int. J. Contr. 71(4), 631–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shen, P., Zhang, X., Fang, Y.: Complete and time-optimal path-constrained trajectory planning with torque and velocity constraints: theory and applications. IEEE/ASME Trans. Mechatron. 23(2), 735–746 (2018)

    Article  Google Scholar 

  6. Barre, P.-J., Bearee, R., Borne, P., Dumetz, E.: Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. J. Int. Rob. Syst. 42(3), 275–293 (2005)

    Article  Google Scholar 

  7. Biagiotti, L., Melchiorri, C., Moriello, L.: Optimal trajectories for vibration reduction based on exponential filters. IEEE Trans. Control Syst. Technol. 24(2), 609–622 (2015)

    Google Scholar 

  8. Carabin, G., Wehrle, E., Vidoni, R.: A review on energy-saving optimization methods for robotic and automatic systems. Robotics 6(4), 39 (2017)

    Article  Google Scholar 

  9. Meike, D., Ribickis, L.: Recuperated energy savings potential and approaches in industrial robotics. In: 2011 IEEE International Conference on Automation Science and Engineering, pp. 299–303. IEEE (2011)

    Google Scholar 

  10. Carabin, G., Scalera, L.: On the trajectory planning for energy efficiency in industrial robotic systems. Robotics 9(4), 89 (2020)

    Article  Google Scholar 

  11. Carabin, G., Scalera, L., Wongratanaphisan, T., Vidoni, R.: An energy-efficient approach for 3D printing with a Linear Delta Robot equipped with optimal springs. Rob. Comput.-Int. Manuf. 67, 102045 (2021)

    Article  Google Scholar 

  12. Park, J.S.: Motion profile planning of repetitive point-to-point control for maximum energy conversion efficiency under acceleration conditions. Mechatronics 6(6), 649–663 (1996)

    Article  Google Scholar 

  13. Universal robot UR5e. https://www.universal-robots.com

  14. Lee, S.-D., Song, J.-B.: Sensorless collision detection based on friction model for a robot manipulator. Int. J. Precis. Eng. Manuf. 17(1), 11–17 (2016). https://doi.org/10.1007/s12541-016-0002-3

    Article  Google Scholar 

  15. Duan, C., Singh, R.: Dynamics of a 3 DoF torsional system with a dry friction controlled path. J. Sound Vibr. 289(4–5), 657–688 (2006)

    Article  Google Scholar 

  16. Boscariol, P., Caracciolo, R., Richiedei, D., Trevisani, A.: Energy optimization of functionally redundant robots through motion design. Appl. Sci. 10(9), 3022 (2020)

    Article  Google Scholar 

  17. Boscariol, P., Richiedei, D.: Energy optimal design of servo-actuated systems: a concurrent approach based on scaling rules. Renew. Sustain. Energy Rev. 156, 111923 (2022)

    Article  Google Scholar 

  18. Eggers, K., Knöchelmann, E., Tappe, S., Ortmaier, T.: Modeling and experimental validation of the influence of robot temperature on its energy consumption. In: 2018 IEEE IEEE International Conference on Industrial Technology (ICIT), pp. 239–243 (2018)

    Google Scholar 

  19. Raviola, A., Guida, R., De Martin, A., Pastorelli, S., Mauro, S., Sorli, M.: Effects of temperature and mounting configuration on the dynamic parameters identification of industrial robots. Robotics 10(3), 83 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Scalera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boscariol, P., Clochiatti, E., Scalera, L., Gasparetto, A. (2023). A Framework for Improving the Energy Efficiency and Sustainability of Collaborative Robots. In: Petuya, V., Quaglia, G., Parikyan, T., Carbone, G. (eds) Proceedings of I4SDG Workshop 2023. I4SDG 2023. Mechanisms and Machine Science, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-32439-0_6

Download citation

Publish with us

Policies and ethics