Skip to main content

High-Order Arbitrary-Lagrangian-Eulerian Schemes on Crazy Moving Voronoi Meshes

  • Conference paper
  • First Online:
Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems (YR 2021)

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 32))

Included in the following conference series:

  • 180 Accesses

Abstract

Hyperbolic partial differential equations (PDEs) cover a wide range of interesting phenomena, from human and hearth-sciences up to astrophysics: this unavoidably requires the treatment of many space and time scales in order to describe at the same time observer-size macrostructures, multi-scale turbulent features, and also zero-scale shocks. Moreover, numerical methods for solving hyperbolic PDEs must reliably handle different families of waves: smooth rarefactions, and discontinuities of shock and contact type. In order to achieve these goals, an effective approach consists in the combination of space-time-based high-order schemes, very accurate on smooth features even on coarse grids, with Lagrangian methods, which, by moving the mesh with the fluid flow, yield highly resolved and minimally dissipative results on both shocks and contacts. However, ensuring the high quality of moving meshes is a huge challenge that needs the development of innovative and unconventional techniques. The scheme proposed here falls into the family of Arbitrary-Lagrangian-Eulerian (ALE) methods, with the unique additional freedom of evolving the shape of the mesh elements through connectivity changes. We aim here at showing, by simple and very salient examples, the capabilities of high-order ALE schemes, and of our novel technique, based on the high-order space-time treatment of topology changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous galerkin schemes: Application to structure preserving discretization. J. Comput. Phys. 453, 110955 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, R.W., Dobrev, V.A., Kolev, T.V., Rieben, R.N., Tomov, V.Z.: High-order multi-material ale hydrodynamics. SIAM J. Sci. Comput. 40(1), B32–B58 (2018)

    Google Scholar 

  3. Antoniadis, A., Tsoutsanis, P., Drikakis, D.: High-order schemes on mixed-element unstructured grids for aerodynamic flows. In: 42nd AIAA Fluid Dynamics Conference and Exhibit, p. 2833 (2012)

    Google Scholar 

  4. Basting, S., Quaini, A., Canic, S., Glowinski, R.: Extended ale method for fluid-structure interaction problems with large structural displacements. J. Comput. Phys. 331, 312–336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bo, W., Shashkov, M.J.: Adaptive reconnection-based arbitrary Lagrangian Eulerian method. J. Comput. Phys. 299, 902–939 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boscheri, W., Dumbser, M., Zanotti, O.: High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. J. Comput. Phys. 291, 120–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boscheri, W., Chiocchetti, S., Peshkov, I.: A cell-centered implicit-explicit lagrangian scheme for a unified model of nonlinear continuum mechanics on unstructured meshes. J. Comput. Phys. 451, 110852 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boscheri, W., Dumbser, M.: Arbitrary-lagrangian-eulerian one-step weno finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 14(5), 1174–1206 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boscheri, W., Dumbser, M., Gaburro, E.: Continuous finite element subgrid basis functions for discontinuous galerkin schemes on unstructured polygonal voronoi meshes. Commun. Comput. Phys. 32(1), 259–298 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caramana, E.J., Shashkov, M.J.: Elimination of artificial grid distorsion and hourglass-type motions by means of Lagrangian subzonal masses and pressures. J. Comput. Phys. 142, 521–561 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carré, G., Del Pino, S., Després, B., Labourasse, E.: A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys. 228, 5160–5183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castro, M., Gallardo, J.M., López-GarcÍa, J.A., Parés, C.: Well-balanced high order extensions of godunov’s method for semilinear balance laws. SIAM J. Numer. Anal. 46(2), 1012–1039 (2008)

    Google Scholar 

  13. Chiocchetti, S., Müller, C.: A solver for stiff finite-rate relaxation in baer–nunziato two-phase flow models. In: Droplet Interactions and Spray Processes, pp. 31–44. Springer (2020)

    Google Scholar 

  14. Chiocchetti, S., Peshkov, I., Gavrilyuk, S., Dumbser, M.: High order ader schemes and glm curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension. J. Comput. Phys. 426, 109898 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws-multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230(10), 4028–4050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Després, B.: Numerical methods for Eulerian and Lagrangian conservation laws. Birkhäuser (2017)

    Google Scholar 

  17. Dobrev, V.A., Ellis, T.E., Kolev, T.V., Rieben, R.N.: High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics. Comput. Fluids83, 58–69 (2013)

    Google Scholar 

  18. Dobrev, V., Knupp, P., Kolev, T., Mittal, K., Rieben, R., Tomov, V.: Simulation-driven optimization of high-order meshes in ale hydrodynamics. Comput. Fluids 208, 104602 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dumbser, M.: Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 280, 57–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dumbser, M., Balsara, D.S.: A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304(C), 275–319 (2016)

    Google Scholar 

  21. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)

    Google Scholar 

  22. Dumbser, M., Chiocchetti, S., Peshkov, I.: On numerical methods for hyperbolic pde with curl involutions. In: Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy, pp. 125–134. Springer (2020)

    Google Scholar 

  23. Dumbser, M., Fambri, F., Gaburro, E., Reinarz, A.: On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations. J. Comput. Phys. 109088 (2019)

    Google Scholar 

  24. Dürrwächter, J., Kurz, M., Kopper, P., Kempf, D., Munz, C.-D., Beck, A.: An efficient sliding mesh interface method for high-order discontinuous Galerkin schemes. Comput. Fluids 217, 104825 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fambri, F., Dumbser, M., Zanotti, O.: Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-Stokes and resistive MHD equations. Comput. Phys. Commun. 220, 297–318 (2017)

    Article  MathSciNet  Google Scholar 

  26. Gabriel, A.-A., Li, D., Chiocchetti, S., Tavelli, M., Peshkov, I., Romenski, E., Dumbser, M.: A unified first-order hyperbolic model for nonlinear dynamic rupture processes in diffuse fracture zones. Philosop. Trans. R. Soc. A 379(2196), 20200130 (2021)

    Google Scholar 

  27. Gaburro, E.: A unified framework for the solution of hyperbolic pde systems using high order direct arbitrary-Lagrangian-Eulerian schemes on moving unstructured meshes with topology change. Arch. Comput. Methods Eng. 28(3), 1249–1321 (2021)

    Article  MathSciNet  Google Scholar 

  28. Gaburro, E., Boscheri, W., Chiocchetti, S., Klingenberg, C., Springel, V., Dumbser, M.: High order direct arbitrary-Lagrangian-Eulerian schemes on moving voronoi meshes with topology changes. J. Comput. Phys. 407, 109167 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gaburro, E., Castro, M.J., Dumbser, M.: A well balanced diffuse interface method for complex nonhydrostatic free surface flows. Comput. Fluids 175, 180–198 (2018)

    Google Scholar 

  30. Gaburro, E., Castro, M.J., Dumbser, M.: A well balanced finite volume scheme for general relativity. SIAM J. Sci. Comput. 43(6), B1226–B1251 (2021)

    Google Scholar 

  31. Gaburro, E., Dumbser, M.: A posteriori subcell finite volume limiter for general PNPM schemes: applications from gasdynamics to relativistic magnetohydrodynamics. J. Sci. Comput. 86(3), 1–41 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gaburro, E., Dumbser, M., Castro, M.J.: Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes. Comput. Fluids 159, 254–275 (2017)

    Google Scholar 

  33. Gaburro, E., Öffner, P., Ricchiuto, M., Torlo, D.: High order entropy preserving ADER-DG schemes. Appl. Math. Comput. 440, 127644 (2023)

    Google Scholar 

  34. Godunov, S.K.: Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Math. USSR: Sbornik 47, 271–306 (1959)

    MATH  Google Scholar 

  35. Guermond, J.-L., Nazarov, M., Popov, B., Tomas, I.: Second-order invariant domain preserving approximation of the euler equations using convex limiting. SIAM J. Sci. Comput. 40(5), A3211–A3239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu, C., Shu, C.W.: A high-order weno finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150, 561–594 (1999)

    Article  MathSciNet  Google Scholar 

  37. Käppeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. J. Comput. Phys. 259, 199–219 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kemm, F., Gaburro, E., Thein, F., Dumbser, M.: A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model. Comput. Fluids 204, 104536 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kenamond, M., Kuzmin, D., Shashkov, M.: A positivity-preserving and conservative intersection-distribution-based remapping algorithm for staggered ale hydrodynamics on arbitrary meshes. J. Comput. Phys. 435, 110254 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kikinzon, E., Shashkov, M., Garimella, R.: Establishing mesh topology in multi-material cells: Enabling technology for robust and accurate multi-material simulations. Comput. Fluids 172, 251–263 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Klingenberg, C., Puppo, G., Semplice, M.: Arbitrary order finite volume well-balanced schemes for the euler equations with gravity. SIAM J. Sci. Comput. 41(2), A695–A721 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, W., Cheng, J., Shu, C.W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228, 8872–8891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Loubère, R., Maire, P.H., Váchal, P.: 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity. Int. J. Numer. Methods Fluids 72, 22–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Loubère, R., Maire, P.H., Shashkov, M.J.: ReALE: a reconnection Arbitrary-Lagrangian-Eulerian method in cylindrical geometry. Comput. Fluids 46, 59–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Loubère, R., Maire, P.H., Shashkov, M.J., Breil, J., Galera, S.: ReALE: a reconnection-based arbitrary-Lagrangian-Eulerian method. J. Comput. Phys. 229, 4724–4761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Loubère, R., Shashkov, M.J.: A subcell remapping method on staggered polygonal grids for arbitrary-lagrangian-eulerian methods. J. Comput. Phys. 23, 155–160 (2004)

    MATH  Google Scholar 

  47. Loubere, R., Dumbser, M., Diot, S.: A new family of high order unstructured mood and ader finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys. 16(3), 718–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Maire, P.H.: A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Int. J. Numer. Methods Fluids 65, 1281–1294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Morgan, N.R., Archer, B.J.: On the origins of lagrangian hydrodynamic methods. Nucl. Technol. 207(sup1), S147–S175 (2021)

    Google Scholar 

  50. Morgan, N.R., Liu, X., Burton, D.E.: Reducing spurious mesh motion in lagrangian finite volume and discontinuous Galerkin hydrodynamic methods. J. Comput. Phys. 372, 35–61 (2018)

    Google Scholar 

  51. Munz, C.D.: On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Numer. Anal. 31, 17–42 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Olivares, H., Peshkov, I.M., Most, E.R., Guercilena, F.M., Papenfort, L.J.: New first-order formulation of the Einstein equations exploiting analogies with electrodynamics. Phys. Rev. D 105(12), 124038 (2022)

    Article  MathSciNet  Google Scholar 

  53. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Peshkov, I., Dumbser, M., Boscheri, W., Romenski, E., Chiocchetti, S., Ioriatti, M.: Simulation of non-newtonian viscoplastic flows with a unified first order hyperbolic model and a structure-preserving semi-implicit scheme. Comput. Fluids 224, 104963 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Peshkov, I., Romenski, E., Dumbser, M.: Continuum mechanics with torsion. Continuum Mech. Thermodyn 31(5), 1517–1541 (2019)

    Google Scholar 

  56. Re, B., Dobrzynski, C., Guardone, A.: An interpolation-free ale scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids. J. Comput. Phys. 340, 26–54 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ruppert, J.: A new and simple algorithm for quality 2-dimensional mesh generation. Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, pp. 83–92 (1993)

    Google Scholar 

  58. Rusanov, V.V.: Calculation of Interaction of Non-Steady Shock Waves with Obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961)

    Google Scholar 

  59. Scovazzi, G.: Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach. J. Comput. Phys. 231, 8029–8069 (2012)

    Article  MathSciNet  Google Scholar 

  60. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  61. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Monthly Notices R. Astronom. Soc. 401(2), 791–851 (2010)

    Article  Google Scholar 

  62. Tavelli, M., Chiocchetti, S., Romenski, E., Gabriel, A.-A., Dumbser, M.: Space-time adaptive ader discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure. J. Comput. Phys. 422, 109758 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  63. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media (2013)

    Google Scholar 

  64. Tsoutsanis, P., Kokkinakis, I.W., Könözsy, L., Drikakis, D., Williams, R.J.R.,Youngs, D.L.: Comparison of structured-and unstructured-grid, compressible and incompressible methods using the vortex pairing problem. Comput. Methods Appl. Mech. Eng. 293, 207–231 (2015)

    Google Scholar 

  65. von Neumann, J., Richtmyer, R.D.: A method for the calculation of hydrodynamics shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wang, L., Persson, P.-O.: A high-order discontinuous Galerkin method with unstructured space-time meshes for two-dimensional compressible flows on domains with large deformations. Comput. Fluids 118, 53–68 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Wilkins, M.L.: Calculation of elastic-plastic flow. Methods Comput. Phys. 3 (1964)

    Google Scholar 

Download references

Acknowledgements

E. Gaburro is member of the CARDAMOM team at the Inria center of the University of Bordeaux in France and S. Chiocchetti is member of the INdAM GNCS group in Italy. E. Gaburro gratefully acknowledges the support received from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Individual Fellowship SuPerMan, grant agreement No. 101025563. S. Chiocchetti acknowledges the support obtained by the Deutsche Forschungsgemeinschaft (DFG) via the project DROPIT, grant no. GRK 2160/2, and from the European Union’s Horizon Europe Research and Innovation Programme under the Marie Skłodowska-Curie Postdoctoral Fellowship MoMeNTUM, grant agreement No. 101109532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Gaburro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaburro, E., Chiocchetti, S. (2023). High-Order Arbitrary-Lagrangian-Eulerian Schemes on Crazy Moving Voronoi Meshes. In: Albi, G., Boscheri, W., Zanella, M. (eds) Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems. YR 2021. SEMA SIMAI Springer Series, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-29875-2_5

Download citation

Publish with us

Policies and ethics