Skip to main content

Genome Editing: Mechanism and Utilization in Plant Breeding

  • Chapter
  • First Online:
Advanced Crop Improvement, Volume 1

Abstract

Advances in genome editing technologies have opened new horizons and empowered scientists to make desired amends in the plant genomes. With the advent of prokaryote-derived editing technology, known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas), site-specific manipulation in the genome of a crop is feasible with more robustness, precision, and specificity. Owing to its unparallel programmability, various agro-economical aspects for crop improvement such as increasing yield, disease resistance, crop quality and herbicide resistance have been addressed. Combining the genome editing approach with conventional breeding has further paved the way toward the fast-track acquisition of required traits in crops. Recently, various breeding approaches have been developed that target reproduction-associated genes using CRISPR-Cas systems. Among these approaches are haploid induction, development of male sterile lines, hybrid vigor fixation, and manipulation of self-incompatibility in crops. Furthermore, due to CRISPR-Cas technology, de novo domestication of the orphan crops has emerged. The main focus of this chapter will be genome editing platforms, stable and transient plant transformation techniques, different approaches that are utilized to improve crop production and recent trends emerging as a result of adaptation of CRISPR-Cas systems in plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Baki, A. A., Saunders, J. A., Matthews, B. F., & Pittarelli, G. W. (1990). DNA uptake during electroporation of germinating pollen grains. Plant Science, 70(2), 181–190.

    Article  CAS  Google Scholar 

  • Abudayyeh, O. O., et al. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299), aaf5573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abudayyeh, O. O., et al. (2017). RNA targeting with CRISPR–Cas13. Nature, 550(7675), 280–284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abudayyeh, O. O., et al. (2019). A cytosine deaminase for programmable single-base RNA editing. Science, 365(6451), 382–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, Z., et al. (2015a). Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Molecular Plant, 8(8), 1288–1291.

    Article  CAS  PubMed  Google Scholar 

  • Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., & Mahfouz, M. M. (2015b). CRISPR/Cas9-mediated viral interference in plants. Genome Biology, 16(1), 1–11.

    Article  CAS  Google Scholar 

  • Ali, Z., et al. (2020). Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Communications Biology, 3(1), 1–13.

    Article  Google Scholar 

  • Aman, R., Mahas, A., Butt, H., Ali, Z., Aljedaani, F., & Mahfouz, M. (2018). Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis. Viruses, 10(12), 732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513(7519), 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders, C., Bargsten, K., & Jinek, M. (2016). Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Molecular Cell, 61(6), 895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, M., Turesson, H., Nicolia, A., Fält, A.-S., Samuelsson, M., & Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36(1), 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Anzalone, A. V., et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begemann, M. B., et al. (2017). Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Scientific Reports, 7(1), 1–6.

    Article  CAS  Google Scholar 

  • Bernabé-Orts, J. M., et al. (2019). Assessment of Cas12a-mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17(10), 1971–1984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butt, H., et al. (2019). CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biology, 20(1), 1–9.

    Article  Google Scholar 

  • Cermak, T., Baltes, N. J., Cegan, R., Zhang, Y., & Voytas, D. F. (2015). High-frequency, precise modification of the tomato genome, (in eng). Genome Biology, 16, 232. https://doi.org/10.1186/s13059-015-0796-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, J., et al. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 1140–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Char, S. N., et al. (2017). An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 15(2), 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, P., et al. (2020). A Cas9 with PAM recognition for adenine dinucleotides. Nature Communications, 11(1), 1–6.

    Article  Google Scholar 

  • Chen, J. S., et al. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F., et al. (2019). Functional analysis of M-locus protein kinase revealed a novel regulatory mechanism of self-incompatibility in Brassica napus L. International Journal of Molecular Sciences, 20(13), 3303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, F., Wu, J., Cai, X., Liang, J., Freeling, M., & Wang, X. (2018). Gene retention, fractionation and subgenome differences in polyploid plants. Nature Plants, 4(5), 258–268.

    Article  CAS  PubMed  Google Scholar 

  • Christou, P. (1996). Transformation technology. Trends in Plant Science, 1(12), 423–431.

    Article  Google Scholar 

  • Cohen, J. (2019). Prime editing promises to be a cut above CRISPR. Science, 366(6464), 406.

    Article  CAS  PubMed  Google Scholar 

  • Cox, D. B., et al. (2017). RNA editing with CRISPR-Cas13. Science, 358(6366), 1019–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirer, G. S., et al. (2019). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology, 14(5), 456.

    Article  CAS  PubMed  Google Scholar 

  • Do, P. T., et al. (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biology, 19(1), 1–14.

    Article  CAS  Google Scholar 

  • Dong, O. X., et al. (2020). Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 11(1), 1–10.

    Article  CAS  Google Scholar 

  • East-Seletsky, A., et al. (2016). Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 538(7624), 270–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid, A., Alshareef, S., & Mahfouz, M. M. (2018). CRISPR base editors: Genome editing without double-stranded breaks. Biochemical Journal, 475(11), 1955–1964.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, D., Owens, J., & Misra, S. (2000). Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Reports, 19(3), 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Gao, C. (2018). The future of CRISPR technologies in agriculture. Nature Reviews. Molecular Cell Biology, 19(5), 275–276.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Chen, J., Dai, X., Zhang, D., & Zhao, Y. (2016). An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiology, 171(3), 1794–1800.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, L., et al. (2017). Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 35(8), 789–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, H., et al. (2020). Superior field performance of waxy corn engineered using CRISPR–Cas9. Nature Biotechnology, 38(5), 579–581.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Doval, C., & Jinek, M. (2017). Molecular architectures and mechanisms of class 2 CRISPR-associated nucleases. Current Opinion in Structural Biology, 47, 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 551(7681), 464–471.

    Google Scholar 

  • Gaudelli, N. M., et al. (2020). Directed evolution of adenine base editors with increased activity and therapeutic application. Nature Biotechnology, 38(7), 892–900.

    Article  CAS  PubMed  Google Scholar 

  • Ghogare, R., Ludwig, Y., Bueno, G. M., Slamet-Loedin, I. H., & Dhingra, A. (2021). Genome editing reagent delivery in plants. Transgenic Research, 30(4), 321–335.

    Article  CAS  PubMed  Google Scholar 

  • Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., & Zhang, F. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360(6387), 439–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünewald, J., et al. (2020). A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nature Biotechnology, 38(7), 861–864.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, W., Zhang, D., Qi, Y., & Yuan, Z. (2019). Generating photoperiod-sensitive genic male sterile rice lines with CRISPR/Cas9. In Plant genome editing with CRISPR systems (pp. 97–107). Springer.

    Chapter  Google Scholar 

  • Hao, L., et al. (2019). CRISPR/Cas9-mediated adenine base editing in rice genome. Rice Science, 26(2), 125–128.

    Article  Google Scholar 

  • Harrington, L. B., et al. (2018). Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 362(6416), 839–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., & Zhao, Y. (2019). Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH, 1(1), 88–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • He, Y., et al. (2018). Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Molecular Plant, 11(9), 1210–1213.

    Article  CAS  PubMed  Google Scholar 

  • Hickey, L. T., et al. (2019). Breeding crops to feed 10 billion. Nature Biotechnology, 37, 744–754.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Y., et al. (2014). Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Functional & Integrative Genomics, 14(2), 341–349.

    Article  CAS  Google Scholar 

  • Hummel, A. W., et al. (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal, 16(7), 1275–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamil, I. N., et al. (2020). Systematic multi-omics integration (MOI) approach in plant systems biology. Frontiers in Plant Science, 11, 944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen, E. D., et al. (2017). Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microbial Cell Factories, 16(1), 1–16.

    Article  Google Scholar 

  • Ji, X., Si, X., Zhang, Y., Zhang, H., Zhang, F., & Gao, C. (2018). Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome Biology, 19(1), 1–7.

    Article  Google Scholar 

  • Ji, X., Yang, B., & Wang, D. (2020). Achieving plant genome editing while bypassing tissue culture. Trends in Plant Science, 25(5), 427–429.

    Article  CAS  PubMed  Google Scholar 

  • Jia, H., Orbović, V., & Wang, N. (2019). CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnology Journal, 17(10), 1928–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, S., et al. (2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 364(6437), 292–295.

    Article  CAS  PubMed  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, M. Z., Haider, S., Mansoor, S., & Amin, I. (2019a). Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends in Biotechnology, 37(8), 800–804.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. Z., Zaidi, S. S.-E.-A., Amin, I., & Mansoor, S. (2019b). A CRISPR way for fast-forward crop domestication. Trends in Plant Science, 24(4), 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. S. S., Basnet, R., Islam, S. A., & Shu, Q. (2019c). Mutational analysis of OsPLDα1 reveals its involvement in phytic acid biosynthesis in rice grains. Journal of Agricultural and Food Chemistry, 67(41), 11436–11443.

    Article  CAS  PubMed  Google Scholar 

  • Khanday, I., Skinner, D., Yang, B., Mercier, R., & Sundaresan, V. (2019). A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature, 565(7737), 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., Kim, J., Hur, J. K., Been, K. W., Yoon, S.-H., & Kim, J.-S. (2016). Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology, 34(8), 863.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. B., Komor, A. C., Levy, J. M., Packer, M. S., Zhao, K. T., & Liu, D. R. (2017a). Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 35(4), 371–376. https://doi.org/10.1038/nbt.3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H., Kim, S., Ryu, J., Kang, B., Kim, J., & Kim, S. (2017b). CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications, 8, 14406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Alptekin, B., & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Functional & Integrative Genomics, 18(1), 31–41.

    Article  CAS  Google Scholar 

  • Kleinstiver, B. P., et al. (2016). Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology, 34(8), 869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver, B. P., et al. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 37(3), 276–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koblan, L. W., et al. (2018). Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 36(9), 843–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor, A. C., et al. (2017). Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: A base editors with higher efficiency and product purity. Science Advances, 3(8), eaao4774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang, Y., et al. (2020). Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Molecular Plant, 13(4), 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., et al. (2019). Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal, 17(2), 362–372.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., et al. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 169(2), 960–970.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, M., et al. (2016a). Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science, 7, 377.

    PubMed  PubMed Central  Google Scholar 

  • Li, S., et al. (2016b). The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal, 14(11), 2134–2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., et al. (2017). Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics, 44(9), 465–468.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Xiong, X., & Jian-Feng, L. (2018a). New cytosine base editor for plant genome editing. Science China. Life Sciences, 61(12), 1602.

    Article  PubMed  Google Scholar 

  • Li, C., et al. (2018b). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology, 19(1), 59. https://doi.org/10.1186/s13059-018-1443-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., et al. (2018c). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science, 9, 559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, R., et al. (2018d). Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnology Journal, 16(2), 415–427.

    Article  CAS  PubMed  Google Scholar 

  • Li, B., et al. (2019). Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnology Journal, 17(10), 1862–1864.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, C., et al. (2020a). Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology, 38(7), 875–882.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., et al. (2020b). Precise modifications of both exogenous and endogenous genes in rice by prime editing. Molecular Plant, 13, 671–674.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., et al. (2020c). Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnology Journal, 19(5), 937–951.

    Article  CAS  Google Scholar 

  • Li, J., Wang, Z., He, G., Ma, L., & Deng, X. W. (2020d). CRISPR/Cas9 mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. Journal of Genetics and Genomics, 47(5), 263–272.

    Article  PubMed  Google Scholar 

  • Liang, Z., et al. (2017a). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8, 14261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Z., et al. (2017b). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8(1), 1–5.

    Article  Google Scholar 

  • Liang, Z., et al. (2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols, 13(3), 413.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Q., et al. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38(5), 582–585.

    Article  CAS  PubMed  Google Scholar 

  • Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., et al. (2017a). GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants, 3(5), 1–7.

    Article  Google Scholar 

  • Liu, Y., Han, J., Chen, Z., Wu, H., Dong, H., & Nie, G. (2017b). Engineering cell signaling using tunable CRISPR–Cpf1-based transcription factors. Nature Communications, 8(1), 1–8.

    Article  Google Scholar 

  • Liu, L., et al. (2017c). Two distant catalytic sites are responsible for C2c2 RNase activities. Cell, 168(1–2), 121–134.e12.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., et al. (2018). CRISPR/Cas9-mediated resistance to cauliflower mosaic virus. Plant Direct, 2(3), e00047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., & Zhu, J.-K. (2017). Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Molecular Plant, 10(3), 523–525.

    Article  CAS  PubMed  Google Scholar 

  • Lu, K., et al. (2018). Blocking amino acid transporter Os AAP 3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnology Journal, 16(10), 1710–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Y., Zhang, J., Yin, W., Zhang, Z., Song, Y., & Chang, X. (2016). Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods, 13(12), 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  • Ma, C., et al. (2019). CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Horticulture Research, 6(1), 1–15.

    Article  Google Scholar 

  • Macovei, A., et al. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16(11), 1918–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahas, A., Ali, Z., Tashkandi, M., & Mahfouz, M. M. (2019a). Virus-mediated genome editing in plants using the CRISPR/Cas9 system. In Plant genome editing with CRISPR systems (pp. 311–326). Springer.

    Chapter  Google Scholar 

  • Mahas, A., Aman, R., & Mahfouz, M. (2019b). CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biology, 20(1), 1–16.

    Article  Google Scholar 

  • Maher, M. F., Nasti, R. A., Vollbrecht, M., Starker, C. G., Clark, M. D., & Voytas, D. F. (2020). Plant gene editing through de novo induction of meristems. Nature Biotechnology, 38(1), 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Malzahn, A. A., et al. (2019). Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 17(1), 1–14.

    Article  Google Scholar 

  • Marraffini, L. A., & Sontheimer, E. J. (2010). Self versus non-self-discrimination during CRISPR RNA-directed immunity. Nature, 463(7280), 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzec, M., Brąszewska-Zalewska, A., & Hensel, G. (2020). Prime editing: A new way for genome editing. Trends in Cell Biology, 30, 257–259.

    Article  CAS  PubMed  Google Scholar 

  • Matsoukas, I. G. (2018). Commentary: RNA editing with CRISPR-Cas13. Frontiers in Genetics, 9, 134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Metje-Sprink, J., Menz, J., Modrzejewski, D., & Sprink, T. (2019). DNA-free genome editing: Past, present and future. Frontiers in Plant Science, 9, 1957.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra, R., Joshi, R. K., & Zhao, K. (2020). Base editing in crops: Current advances, limitations and future implications. Plant Biotechnology Journal, 18(1), 20–31.

    Article  PubMed  Google Scholar 

  • Mitter, N., et al. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3(2), 16207.

    Article  CAS  PubMed  Google Scholar 

  • Moon, S. B., et al. (2018). Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nature Communications, 9(1), 1–11.

    Google Scholar 

  • Moreno-Mateos, M. A., et al. (2017). CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nature Communications, 8(1), 1–9.

    Article  CAS  Google Scholar 

  • Murovec, J., Guček, K., Bohanec, B., Avbelj, M., & Jerala, R. (2018). DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Frontiers in Plant Science, 9, 1594.

    Article  PubMed  PubMed Central  Google Scholar 

  • Negishi, K., Kaya, H., Abe, K., Hara, N., Saika, H., & Toki, S. (2019). An adenine base editor with expanded targeting scope using SpCas9-NG v1 in rice. Plant Biotechnology Journal, 17(8), 1476–1478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., & Kamoun, S. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports, 7(1), 1–6.

    Article  CAS  Google Scholar 

  • Nieves-Cordones, M., et al. (2017). Production of low-Cs+ rice plants by inactivation of the K+ transporter Os HAK 1 with the CRISPR-Cas system. The Plant Journal, 92(1), 43–56.

    Article  CAS  PubMed  Google Scholar 

  • O’Connell, M. R. (2019). Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR–Cas systems. Journal of Molecular Biology, 431(1), 66–87.

    Article  PubMed  Google Scholar 

  • Okada, A., et al. (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10), 1905–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva, R., et al. (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 37(11), 1344–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortigosa, A., Gimenez-Ibanez, S., Leonhardt, N., & Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of Sl JAZ 2. Plant Biotechnology Journal, 17(3), 665–673.

    Article  CAS  PubMed  Google Scholar 

  • Osakabe, Y., et al. (2018). CRISPR–Cas9-mediated genome editing in apple and grapevine. Nature Protocols, 13(12), 2844–2863.

    Article  CAS  PubMed  Google Scholar 

  • Paul, B., & Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 43(1), 8–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin, X., Li, W., Liu, Y., Tan, M., Ganal, M., & Chetelat, R. T. (2018). A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. The Plant Journal, 93(3), 417–430.

    Article  CAS  PubMed  Google Scholar 

  • Qin, L., et al. (2020). High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnology Journal, 18(1), 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Qu, L., et al. (2019). Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nature Biotechnology, 37(9), 1059–1069.

    Article  CAS  PubMed  Google Scholar 

  • Que, Q., Chen, Z., Kelliher, T., Skibbe, D., Dong, S., & Chilton, M.-D. (2019). Plant DNA repair pathways and their applications in genome engineering. In Plant genome editing with CRISPR systems (pp. 3–24). Springer.

    Chapter  Google Scholar 

  • Ran, F. A., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6), 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees, H. A., et al. (2017). Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nature Communications, 8(1), 15790. https://doi.org/10.1038/ncomms15790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter, M. F., et al. (2020). Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 38(7), 883–891. https://doi.org/10.1038/s41587-020-0453-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruf, S., & Bock, R. (2017). Loopholes for smuggling DNA into pollen. Nature Plants, 3(12), 918–919.

    Article  CAS  PubMed  Google Scholar 

  • Salsman, J., & Dellaire, G. (2017). Precision genome editing in the CRISPR era. Biochemistry and Cell Biology, 95(2), 187–201.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-León, S., et al. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 16(4), 902–910.

    Article  PubMed  Google Scholar 

  • Sankaranarayanan, S., & Higashiyama, T. (2017). Directional growth for sperm delivery. In Pollen tip growth (pp. 149–166). Springer.

    Chapter  Google Scholar 

  • Sapone, A., et al. (2011). Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: Celiac disease and gluten sensitivity. BMC Medicine, 9(1), 1–11.

    Article  Google Scholar 

  • Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 39(21), 9275–9282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Q., Wang, Y., Li, J., & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9(10), 2395.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., et al. (2017). ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Shimatani, Z., et al. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology, 35(5), 441–443.

    Article  CAS  PubMed  Google Scholar 

  • Shmakov, S., et al. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell, 60(3), 385–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, N., & Goring, D. (2001). Mechanisms of self-incompatibility in flowering plants. Cellular and Molecular Life Sciences, 58(14), 1988–2007.

    Article  CAS  PubMed  Google Scholar 

  • Singh, M., Kumar, M., Albertsen, M. C., Young, J. K., & Cigan, A. M. (2018). Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Molecular Biology, 97(4), 371–383.

    Article  CAS  PubMed  Google Scholar 

  • Song, F., & Stieger, K. (2017). Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Molecular Therapy-Nucleic Acids, 7, 53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., et al. (2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 9(4), 628–631.

    Article  CAS  PubMed  Google Scholar 

  • Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., & Cigan, A. M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169(2), 931–945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K., & Cigan, A. M. (2016a). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications, 7, 13274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K., & Cigan, A. M. (2016b). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications, 7(1), 1–7.

    Article  Google Scholar 

  • Tang, L. (2020). PAM-less is more. Nature Methods, 17(6), 559–559.

    Article  CAS  PubMed  Google Scholar 

  • Tang, X., et al. (2016). A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Molecular Plant, 9(7), 1088–1091.

    Article  CAS  PubMed  Google Scholar 

  • Tang, X., et al. (2017a). A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 3, 17018.

    Article  CAS  PubMed  Google Scholar 

  • Tang, L., et al. (2017b). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, 7(1), 1–12.

    Article  Google Scholar 

  • Tang, X., et al. (2018). A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology, 19(1), 1–13.

    Article  Google Scholar 

  • Tang, X., et al. (2020). Plant prime editors enable precise gene editing in rice cells. Molecular Plant, 13, 667–670.

    Article  CAS  PubMed  Google Scholar 

  • Tóth, E., et al. (2016). Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biology Direct, 11(1), 46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veillet, F., et al. (2019). Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. International Journal of Molecular Sciences, 20(2), 402.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu, T. V., et al. (2020). Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnology Journal, 18(10), 2133–2143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton, R. T., Christie, K. A., Whittaker, M. N., & Kleinstiver, B. P. (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 368(6488), 290–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltz, E. (2018). With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol, 36(1), 6–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947–951.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Mao, Y., Lu, Y., Tao, X., & Zhu, J.-K. (2017a). Multiplex gene editing in rice using the CRISPR-Cpf1 system. Molecular Plant, 10(7), 1011–1013.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F.-Z., et al. (2017b). OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Frontiers in Plant Science, 8, 1868.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W., et al. (2018). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. The CRISPR Journal, 1(1), 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., et al. (2019). Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 37(3), 283–286.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., et al. (2020a). The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant Biotechnology Journal, 18(12), 2436–2443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., et al. (2020b). A cytokinin-activation enzyme-like gene improves grain yield under various field conditions in rice. Plant Molecular Biology, 102(4), 373–388.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., et al. (2020c). Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9. Nature Biotechnology, 38(12), 1460–1465.

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth, W., Ghatak, A., Bellaire, A., Chaturvedi, P., & Varshney, R. K. (2020). PANOMICS meets germplasm. Plant Biotechnology Journal, 18(7), 1507–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolter, F., & Puchta, H. (2018). The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. The Plant Journal, 94(5), 767–775.

    Article  CAS  PubMed  Google Scholar 

  • Woo, J. W., et al. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 33(11), 1162.

    Article  CAS  PubMed  Google Scholar 

  • Xu, R., et al. (2016). Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics, 43(8), 529–532.

    Article  CAS  PubMed  Google Scholar 

  • Xu, R., et al. (2017). Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnology Journal, 15(6), 713–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., et al. (2019). Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Molecular Plant, 12(11), 1434–1446.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., et al. (2021). Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnology Journal, 19(1), 11.

    Article  CAS  PubMed  Google Scholar 

  • Yan, W. X., et al. (2017). BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nature Communications, 8(1), 1–9.

    Article  Google Scholar 

  • Yan, F., et al. (2018). Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Molecular Plant, 11(4), 631–634.

    Article  CAS  PubMed  Google Scholar 

  • Yao, L., et al. (2018). OsMATL mutation induces haploid seed formation in indica rice. Nature Plants, 4(8), 530–533.

    Article  CAS  PubMed  Google Scholar 

  • Yin, X., et al. (2017). CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports, 36(5), 745–757.

    Article  CAS  PubMed  Google Scholar 

  • Zafar, K., et al. (2020). Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Frontiers in Plant Science, 11, 575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi, S. S.-E.-A., Mahfouz, M. M., & Mansoor, S. (2017). CRISPR-Cpf1: A new tool for plant genome editing. Trends in Plant Science, 22(7), 550–553.

    Article  CAS  PubMed  Google Scholar 

  • Zetsche, B., et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, (in eng). Cell, 163(3), 759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., & Palmgren, M. (2020). Gene-editing in plants no longer requires tissue culture. Frontiers of Agricultural Science and Engineering, 7(2), 229.

    Article  Google Scholar 

  • Zhang, Y., et al. (2016a). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7, 12617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., et al. (2016b). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7(1), 1–8.

    Google Scholar 

  • Zhang, B., et al. (2019a). Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Nature Communications, 10(1), 2544. https://doi.org/10.1038/s41467-019-10507-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, R., Meng, Z., Abid, M. A., & Zhao, X. (2019b). Novel pollen magnetofection system for transformation of cotton plant with magnetic nanoparticles as gene carriers. In Transgenic cotton (pp. 47–54). Springer.

    Chapter  Google Scholar 

  • Zhang, Z., et al. (2019c). Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnology Journal, 17, 1623–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., et al. (2020). Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature Biotechnology, 38(7), 856–860.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., et al. (2017). Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 3(12), 956–964.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Z., et al. (2018). Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Molecular Plant, 11(7), 999–1002.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Y., et al. (2019). Mutation of ZmDMP enhances haploid induction in maize. Nature Plants, 5(6), 575–580.

    Article  PubMed  Google Scholar 

  • Zhou, Z., & Wei, W. (2019). Interrogating the noncoding genome in a high-throughput fashion. National Science Review, 6(3), 397–399.

    Article  CAS  PubMed  Google Scholar 

  • Zong, Y., et al. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 35(5), 438–440.

    Article  CAS  PubMed  Google Scholar 

  • Zong, Y., et al. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 36(10), 950–953.

    Article  CAS  Google Scholar 

  • Zsögön, A., Cermak, T., Voytas, D., & Peres, L. E. P. (2017). Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Science, 256, 120–130.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awan, M.J.A. et al. (2023). Genome Editing: Mechanism and Utilization in Plant Breeding. In: Raina, A., Wani, M.R., Laskar, R.A., Tomlekova, N., Khan, S. (eds) Advanced Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-031-28146-4_16

Download citation

Publish with us

Policies and ethics