Skip to main content

A Molecular Biomarker-Based Triage Approach for Targeted Treatment of Post-COVID-19 Syndrome Patients with Persistent Neurological or Neuropsychiatric Symptoms

  • Chapter
  • First Online:
Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19

Abstract

Approximately 30% of COVID-19 cases may experience chronic symptoms, known as post-COVID-19 syndrome (PCS). Common PCS symptoms can include fatigue, cognitive impairment, and persistent physical, neurological, and neuropsychiatric complaints. To improve healthcare and management of the current and future pandemics, we highlight the need for establishing interdisciplinary post-viral outpatient clinics comprised of specialists in fields such as psychiatry, psychotherapy, neurology, cardiology, pneumology, and immunology. In this way, PCS patients with a high health burden can receive modern diagnostics and targeted therapeutic recommendations. A key objective is to distinguish the “sick recovered” from the “healthy recovered.” Our hypothesis is that there is a PCS subgroup with autoimmune-mediated systemic and brain-vascular dysregulation, which may lead to circulatory disorders, fatigue, cognitive impairment, depression, and anxiety. This can be clarified using a combination of specific antibody diagnostics and precise clinical, psychological, and apparative testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. COVID-19 Coronavirus Pandemic. https://www.worldometers.info/coronavirus/. Accessed August 26, 2022

  2. COVID-19 Cumulative Infection Collaborators (2022) Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis. Lancet 399(10344):2351–2380

    Article  Google Scholar 

  3. Davis A (2022) COVID Evaluation Model Estimates 57 Percent of World Population Infected at Least Once. https://www.newsweek.com/covid-evaluation-model-estimates-57-percent-world-population-infected-least-once-1672440. Accessed August 26, 2022

  4. Pulliam JRC, van Schalkwyk C, Govender N, et al (2022) Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science 376(6593):eabn4947. https://doi.org/10.1126/science.abn4947

  5. Phan TT, Nguyen TB, Phung QT, et al (2022) Incidence of SARS-CoV-2 Infection during the Omicron Variant Emergence in Southern Vietnam: Prior Infection versus Third-Dose Vaccination. Microbiol Spectr; Aug 24:e0117522. https://doi.org/10.1128/spectrum.01175-22

    Article  Google Scholar 

  6. Achenbach J (2022) As the BA.5 variant spreads, the risk of coronavirus reinfection grows. https://www.washingtonpost.com/health/2022/07/10/omicron-variant-ba5-covid-reinfection/

  7. Keane D (2022) How likely am I to be reinfected with Covid and do Omicron BA.4 and BA.5 have different symptoms? Evening Standard; July 11. https://www.standard.co.uk/news/uk/covid-how-likely-reinfected-ba4-ba5-omicron-variant-symptoms-b1011555.html

  8. Tenforde MW, Kim SS, Lindsell CJ, et al (2020) Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network – United States, March-June 2020. MMWR Morb Mortal Wkly Rep 69(30):993–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang Y, Pinto MD, Borelli JL, et al (2021) COVID Symptoms, Symptom Clusters, and Predictors for Becoming a Long-Hauler: Looking for Clarity in the Haze of the Pandemic. medRxiv 2021.03.03.21252086. https://doi.org/10.1101/2021.03.03.21252086

  10. National Institute for Health and Care Excellence (NICE), Scottish Intercollegiate Guidelines Network (SIGN) and Royal College of General Practitioners (RCGP) (2022) March 01; COVID-19 rapid guideline: managing the long-term effects of COVID-19. https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742. Accessed August 26, 2022

  11. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. World Health Organization. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1. Accessed April 06, 2022

  12. Renaud-Charest O, Lui LMW, Eskander S, et al (2021) Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. J Psychiatr Res 144:129–137

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nalbandian A, Sehgal K, Gupta A, et al (2021) Post-acute COVID-19 syndrome. Nat Med 27(4):601–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ceban F, Ling S, Lui LMW, et al (2022) Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav Immun 101:93–135

    Article  CAS  PubMed  Google Scholar 

  15. Sacchi MC, Tamiazzo S, Stobbione P, et al (2021) SARS-CoV-2 infection as a trigger of autoimmune response. Clin Transl Sci 14(3):898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Acosta-Ampudia Y, Monsalve DM, et al (2022) Persistent Autoimmune Activation and Proinflammatory State in Post-Coronavirus Disease 2019 Syndrome. J Infect Dis 225(12):2155–2162

    Article  CAS  PubMed  Google Scholar 

  17. Seeßle J, Waterboer T, Hippchen T, et al (2022) Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin Infect Dis 74(7):1191–1198

    Article  PubMed  Google Scholar 

  18. Dotan A, Muller S, Kanduc D, et al (2021) The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev 20(4):102792. https://doi.org/10.1016/j.autrev.2021.102792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vasilevska V, Guest PC, Bernstein HG, et al (2021) Molecular mimicry of NMDA receptors may contribute to neuropsychiatric symptoms in severe COVID-19 cases. J Neuroinflammation 18(1):245. https://doi.org/10.1186/s12974-021-02293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim D, Lee JY, Yang JS, et al (2020) The Architecture of SARS-CoV-2 Transcriptome. Cell 181(4):914–921.e10. https://doi.org/10.1016/j.cell.2020.04.011

  21. Jamison DA Jr, Anand Narayanan S, Trovão NS, et al (2022) A comprehensive SARS-CoV-2 and COVID-19 review, Part 1: Intracellular overdrive for SARS-CoV-2 infection. Eur J Hum Genet 30(8):889–898

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rashid F, Xie Z, Suleman M, et al (2022) Roles and functions of SARS-CoV-2 proteins in host immune evasion. Front Immunol 13:940756. https://doi.org/10.3389/fimmu.2022.940756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rohaim MA, El Naggar RF, Clayton E, Munir M (2021) Structural and functional insights into non-structural proteins of coronaviruses. Microb Pathog 150:104641. https://doi.org/10.1016/j.micpath.2020.104641

    Article  CAS  PubMed  Google Scholar 

  24. Sun G, Xue L, He Q, et al (2021) Structural insights into SARS-CoV-2 infection and therapeutics development. Stem Cell Res 52:102219. https://doi.org/10.1016/j.scr.2021.102219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gordon DE, Jang GM, Bouhaddou M, et al (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583(7816):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alexandersen S, Chamings A, Bhatta TR (2020) SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat Commun 11(1):6059. https://doi.org/10.1038/s41467-020-19883-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yapici-Eser H, Koroglu YE, Oztop-Cakmak O, et al (2021) Neuropsychiatric Symptoms of COVID-19 Explained by SARS-CoV-2 Proteins’ Mimicry of Human Protein Interactions. Front Hum Neurosci 15:656313. https://doi.org/10.3389/fnhum.2021.656313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nunez-Castilla J, Stebliankin V, Baral P, et al (2022) Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins. Viruses 14(7):1415. https://doi.org/10.3390/v14071415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zuo Y, Estes SK, Ali RA, et al (2020) Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 12(570):eabd3876. https://doi.org/10.1126/scitranslmed.abd3876

  30. Emmenegger M, Kumar SS, Emmenegger V, et al (2021) Anti-prothrombin autoantibodies enriched after infection with SARS-CoV-2 and influenced by strength of antibody response against SARS-CoV-2 proteins. PLoS Pathog 17(12):e1010118. https://doi.org/10.1371/journal.ppat.1010118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narula S, Winkle S, Brand K, et al (2021) Hyperhemolysis in the Setting of Mixed-Autoimmune Hemolytic Anemia: A Rare Complication of COVID-19. Cureus 13(12):e20356. https://doi.org/10.7759/cureus.20356

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shi H, Zuo Y, Navaz S, Harbaugh A, et al (2022) Endothelial Cell-Activating Antibodies in COVID-19. Arthritis Rheumatol 74(7):1132–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh B, Kaur P, Maroules M (2021) Autoimmune Hepatitis-Primary Biliary Cholangitis Overlap Syndrome Triggered by COVID-19. Eur J Case Rep Intern Med 8(3):002264. https://doi.org/10.12890/2021_002264

    Article  PubMed  PubMed Central  Google Scholar 

  34. de Vries MP, Mohammadnia N, Simsek S, Schoorl M (2022) Eosinopenia and increased markers of endothelial damage are characteristic of COVID-19 infection at time of hospital admission. Scand J Clin Lab Invest 82(4):290–295

    Article  PubMed  Google Scholar 

  35. Kayser MS, Dalmau J (2016) Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr Res 176(1):36–40

    Article  PubMed  Google Scholar 

  36. Varatharaj A, Thomas N, Ellul MA, et al (2020) Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7(10):875–882

    Article  PubMed  PubMed Central  Google Scholar 

  37. Douaud G, Lee S, Alfaro-Almagro F, et al (2022) SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604(7907):697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miedema J, Schreurs M, van der Sar-van der Brugge S, et al (2021) Antibodies Against Angiotensin II Receptor Type 1 and Endothelin A Receptor Are Associated With an Unfavorable COVID19 Disease Course. Front Immunol 12:684142. https://doi.org/10.3389/fimmu.2021.684142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cabral-Marques O, Halpert G, Schimke LF, et al (2022) Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun 13(1):1220. https://doi.org/10.1038/s41467-022-28905-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wallukat G, Hohberger B, Wenzel K, et al (2021) Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun 4:100100. https://doi.org/10.1016/j.jtauto.2021.100100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szewczykowski C, Mardin C, Lucio M, et al (2022) Long COVID: Association of Functional Autoantibodies against G-Protein-Coupled Receptors with an Impaired Retinal Microcirculation. Int J Mol Sci 23(13):7209. https://doi.org/10.3390/ijms23137209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bayram N, Gundogan M, Ozsaygılı C, Adelman RA (2022) Posterior ocular structural and vascular alterations in severe COVID-19 patients. Graefes Arch Clin Exp Ophthalmol 260(3):993–1004

    Article  CAS  PubMed  Google Scholar 

  43. Tsokolas G, Tsaousis KT, Diakonis VF, et al (2020) Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review. Eye Brain 12:73–87

    Article  PubMed  PubMed Central  Google Scholar 

  44. Augustin AJ, Atorf J (2022) The Value of Optical Coherence Tomography Angiography (OCT-A) in Neurological Diseases. Diagnostics (Basel) 12(2):468. https://doi.org/10.3390/diagnostics12020468

    Article  PubMed  Google Scholar 

  45. POTS/Long Covid-diagnostics; CellTrend; https://www.celltrend.de/en/pots-cfs-me-sfn/. Accessed September 4, 2022

  46. EUROIMMUN Autoantibodies in neurological diseases. https://www.euroimmun.com/documents/Indications/Autoimmunity/Neurology/MAG_myelin_GAD/FA_1111_I_UK_A.pdf

  47. Dingerman T (2022) Is an active substance against Long Covid in sight? https://www.pharmazeutische-zeitung.de/ist-ein-wirkstoff-gegen-long-covid-in-sicht-128192/#:~:text=Vier%20Long%20Covid%2DPatienten%20konnten,klinische%20Studie%20steht%20noch%20aus

  48. Brodde OE, Hillemann S, Kunde K, et al (1992) Receptor systems affecting force of contraction in the human heart and their alterations in chronic heart failure. J Heart Lung Transplant 11(4 Pt 2):S164–74

    CAS  PubMed  Google Scholar 

  49. Salazar NC, Chen J, Rockman HA (2007) Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta 1768(4):1006–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hohberger B (2021) Results of first successful treatment confirmed with two other Long COVID patients. https://www.fau.eu/2021/08/27/news/research/further-patients-benefit-from-drug-against-long-covid/

  51. Tzilas V, Manali E, Papiris S, Bouros D (2020) Intravenous Immunoglobulin for the Treatment of COVID-19: A Promising Tool. Respiration 99(12):1087–1089

    Article  CAS  PubMed  Google Scholar 

  52. Danieli MG, Piga MA, Paladini A, et al (2021) Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease. Scand J Immunol 94(5):e13101. https://doi.org/10.1111/sji.13101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bornstein SR, Voit-Bak K, Donate T, et al (2022) Chronic post-COVID-19 syndrome and chronic fatigue syndrome: Is there a role for extracorporeal apheresis? Mol Psychiatry 27(1):34–37

    Article  CAS  PubMed  Google Scholar 

  54. Robert Koch-Institut: COVID-19-Dashboard. Evaluations based on the reporting data transmitted from the health authorities in accordance with IfSG. https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4. Accessed April 06, 2022

  55. Whitaker M, Elliott J, Chadeau-Hyam M, et al (2022) Persistent COVID-19 symptoms in a community study of 606,434 people in England. Nat Commun 13(1):1957. https://doi.org/10.1038/s41467-022-29521-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Post-COVID-19 Ambulances; LONG COVID GERMANY. https://longcoviddeutschland.org/ambulanzen/. Accessed April 06, 2022

  57. Steiner J, Prüss H, Köhler S, et al (2020) Autoimmune encephalitis with psychosis: Warning signs, step-by-step diagnostics and treatment. World J Biol Psychiatry 21(4):241–254

    Article  PubMed  Google Scholar 

  58. Pollak TA, Lennox BR, Müller S, et al (2020) Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 7(1):93–108

    Article  PubMed  Google Scholar 

  59. Kayser MS, Dalmau J (2011) The emerging link between autoimmune disorders and neuropsychiatric disease. J Neuropsychiatry Clin Neurosci 23(1):90–97

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhao S, Tran VH (2022) Postural Orthostatic Tachycardia Syndrome. [Updated 2021 Aug 11]. In: StatPearls [Internet]. Treasure Island, FL, USA. https://www.ncbi.nlm.nih.gov/books/NBK541074/ (accessed October 10, 2022)

  61. Arnson Y, Shoenfeld Y, Alon E, Amital H (2010) The antiphospholipid syndrome as a neurological disease. Semin Arthritis Rheum 40(2):97–108

    Article  CAS  PubMed  Google Scholar 

  62. Man YL, Sanna G (2022) Neuropsychiatric Manifestations of Antiphospholipid Syndrome-A Narrative Review. Brain Sci 12(1):91. https://doi.org/10.3390/brainsci12010091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Steiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guest, P.C. et al. (2023). A Molecular Biomarker-Based Triage Approach for Targeted Treatment of Post-COVID-19 Syndrome Patients with Persistent Neurological or Neuropsychiatric Symptoms. In: Guest , P.C. (eds) Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19. Advances in Experimental Medicine and Biology(), vol 1412. Springer, Cham. https://doi.org/10.1007/978-3-031-28012-2_5

Download citation

Publish with us

Policies and ethics