Skip to main content

The Amphipathic Helix in Visual Cycle Proteins: A Review

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1415))

  • 1439 Accesses

Abstract

The visual cycle is a complex biological process that involves the sequential action of proteins in the retinal pigment epithelial (RPE) cells and photoreceptors to modify and shuttle visual retinoids. A majority of the visual cycle proteins are membrane proteins, either integral or peripheral membrane proteins. Despite significant progress in understanding their physiological function, very limited structural information is available for the visual cycle proteins. Moreover, the mechanism of membrane interaction is not yet clear in all cases. Here, we demonstrate the presence of an amphipathic helix in selected RPE visual cycle proteins, using in silico tools, and highlight their role in membrane association and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunt-Milam AH, Saari JC. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J Cell Biol. 1983;97:703–12.

    Article  CAS  PubMed  Google Scholar 

  2. Drin G, Antonny B. Amphipathic helices and membrane curvature. FEBS Lett. 2010;584:1840–7.

    Article  CAS  PubMed  Google Scholar 

  3. Eisenberg D, Weiss RM, Terwilliger TC. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984;81:140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farjo KM, Moiseyev G, Takahashi Y, et al. The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins. Invest Ophthalmol Vis Sci. 2009;50:5089–97.

    Article  PubMed  Google Scholar 

  5. Gautier R, Douguet D, Antonny B, et al. HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics. 2008;24:2101–2.

    Article  CAS  PubMed  Google Scholar 

  6. Gimenez-Andres M, Copic A, Antonny B. The many faces of amphipathic helices. Biomol Ther. 2018;8.

    Google Scholar 

  7. Golczak M, Sears AE, Kiser PD, et al. LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3. Nat Chem Biol. 2015;11:26–32.

    Article  CAS  PubMed  Google Scholar 

  8. Hadicke A, Coutinho A, Roy S, et al. Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8. Biochim Biophys Acta Biomembr. 2021;1863:183605.

    Article  CAS  PubMed  Google Scholar 

  9. Haeseleer F, Jang GF, Imanishi Y, et al. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem. 2002;277:45537–46.

    Article  CAS  PubMed  Google Scholar 

  10. Hamel CP, Tsilou E, Pfeffer BA, et al. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem. 1993;268:15751–7.

    Article  CAS  PubMed  Google Scholar 

  11. He X, Lobsiger J, Stocker A. Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. Proc Natl Acad Sci U S A. 2009;106:18545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin M, Li S, Moghrabi WN, et al. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell. 2005;122:449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jornvall H, Persson B, Krook M, et al. Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995;34:6003–13.

    Article  CAS  PubMed  Google Scholar 

  14. Kiser PD, Golczak M, Lodowski DT, et al. Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. Proc Natl Acad Sci U S A. 2009;106:17325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiser PD, Golczak M, Maeda A, et al. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta. 2012a;1821:137–51.

    Article  CAS  PubMed  Google Scholar 

  16. Kiser PD, Farquhar ER, Shi W, et al. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proc Natl Acad Sci U S A. 2012b;109:E2747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lhor M, Salesse C. Retinol dehydrogenases: membrane-bound enzymes for the visual function. Biochem Cell Biol. 2014;92:510–23.

    Article  CAS  PubMed  Google Scholar 

  18. Liu A, Sui D, Wu D, et al. The activation loop of PIP5K functions as a membrane sensor essential for lipid substrate processing. Sci Adv. 2016;2:e1600925.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moise AR, Golczak M, Imanishi Y, et al. Topology and membrane association of lecithin: retinol acyltransferase. J Biol Chem. 2007;282:2081–90.

    Article  CAS  PubMed  Google Scholar 

  20. Moiseyev G, Chen Y, Takahashi Y, et al. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A. 2005;102:12413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nikolaeva O, Takahashi Y, Moiseyev G, et al. Purified RPE65 shows isomerohydrolase activity after reassociation with a phospholipid membrane. FEBS J. 2009;276:3020–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289:739–45.

    Article  CAS  PubMed  Google Scholar 

  23. Redmond TM, Yu S, Lee E, et al. Rpe65 is necessary for production of 11-cis-vitamin a in the retinal visual cycle. Nat Genet. 1998;20:344–51.

    Article  CAS  PubMed  Google Scholar 

  24. Redmond TM, Poliakov E, Yu S, et al. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A. 2005;102:13658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reisser S, Strandberg E, Steinbrecher T, et al. 3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides. Biophys J. 2014;106:2385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saari JC. Vitamin A metabolism in rod and cone visual cycles. Annu Rev Nutr. 2012;32:125–45.

    Article  CAS  PubMed  Google Scholar 

  27. Saari JC, Nawrot M, Stenkamp RE, et al. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids. Mol Vis. 2009;15:844–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato H, Feix JB. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochim Biophys Acta. 2006;1758:1245–56.

    Article  CAS  PubMed  Google Scholar 

  29. Sears AE, Palczewski K. Lecithin:retinol acyltransferase: a key enzyme involved in the retinoid (visual) cycle. Biochemistry. 2016;55:3082–91.

    Article  CAS  PubMed  Google Scholar 

  30. Simon A, Hellman U, Wernstedt C, et al. The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J Biol Chem. 1995;270:1107–12.

    Article  CAS  PubMed  Google Scholar 

  31. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.

    Article  CAS  PubMed  Google Scholar 

  32. Szuts EZ, Harosi FI. Solubility of retinoids in water. Arch Biochem Biophys. 1991;287:297–304.

    Article  CAS  PubMed  Google Scholar 

  33. Tsilou E, Hamel CP, Yu S, et al. RPE65, the major retinal pigment epithelium microsomal membrane protein, associates with phospholipid liposomes. Arch Biochem Biophys. 1997;346:21–7.

    Article  CAS  PubMed  Google Scholar 

  34. Uppal S, Poliakov E, Gentleman S, et al. RPE65 palmitoylation: a tale of lipid posttranslational modification. Adv Exp Med Biol. 2019a;1185:537–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uppal S, Liu T, Poliakov E, et al. The dual roles of RPE65 S-palmitoylation in membrane association and visual cycle function. Sci Rep. 2019b;9:5218.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu Z, Yang Y, Shaw N, et al. Mapping the ligand binding pocket in the cellular retinaldehyde binding protein. J Biol Chem. 2003;278:12390–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the Intramural Research Program of the National Eye Institute, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Michael Redmond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uppal, S., Poliakov, E., Gentleman, S., Redmond, T.M. (2023). The Amphipathic Helix in Visual Cycle Proteins: A Review. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_78

Download citation

Publish with us

Policies and ethics