Skip to main content

Anticipating the Loss of Unknown Input Observability for Sampled LPV Systems

  • Conference paper
  • First Online:
Recent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis (ACD 2022)

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 467))

Included in the following conference series:

  • 149 Accesses

Abstract

Given a continuous-time Linear Parameter-Varying (LPV) system with a sampled scheduling parameter and subject to an unknown input, this paper provides—under some Lipschitz assumptions—an exact discretization of an extended system which translates the sampled-data unknown input estimation problem into a discrete-time LPV observer design problem with norm-bounded uncertainties. The bounds developed in this process account for the inter-sample behavior of the scheduling parameter, and allow for an estimation of some near-future observability Gramians, from which it is possible to lower bound the number of samples for which the unknown input is guaranteed to remain observable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bainier, G., Marx, B., Ponsart, J.-C.: Bounding the trajectories of continuous-time LPV systems with parameters known in real time. In: 5th IFAC Workshop on Linear Parameter Varying Systems (LPVS) (2022)

    Google Scholar 

  2. Callier, F.M., Desoer, C.A.: Controllability and Observability. The Discrete-Time Case, pp. 265–294. Springer, New York, NY (1991)

    Google Scholar 

  3. Desoer, C., Haneda, H.: The measure of a matrix as a tool to analyze computer algorithms for circuit analysis. IEEE Trans. Circuit Theory 19(5), 480–486 (1972)

    Article  MathSciNet  Google Scholar 

  4. Dollard, J.D., Friedman, C.N.: Product Integration with Application to Differential Equations. Cambridge University Press, Dec. 1984

    Google Scholar 

  5. Gao, Z., Ding, S.X., Ma, Y.: Robust fault estimation approach and its application in vehicle lateral dynamic systems. Optim. Control Appl. Methods 28(3), 143–156 (2007)

    Article  MathSciNet  Google Scholar 

  6. Germund, D.: Stability and error bounds in the numerical integration of ordinary differential equations. Kungl. tekniska hogskolans Handlingar. Almqvist & Wiksells, Uppsala (1959)

    Google Scholar 

  7. Han, W., Wang, Z., Shen, Y.: H-/L\(\infty \) fault detection observer for linear parameter-varying systems with parametric uncertainty. Int. J. Robust Nonlinear Control 29(10), 2912–2926 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hetel, L., Fiter, C., Omran, H., Seuret, A., Fridman, E., Richard, J.-P., Niculescu, S.I.: Recent developments on the stability of systems with aperiodic sampling: an overview. Automatica 76, 309–335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ichalal, D., Marx, B., Ragot, J., Maquin, D.: Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi Sugeno model with unmeasurable premise variables. In: 2009 17th Mediterranean Conference on Control and Automation. IEEE, June 2009

    Google Scholar 

  10. Jungers, M., Deaecto, G.S., Geromel, J.C.: Bounds for the remainders of uncertain matrix exponential and sampled-data control of polytopic linear systems. Automatica 82, 202–208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khan, A., Xie, W., Zhang, B., Liu, L.-W.: A survey of interval observers design methods and implementation for uncertain systems. J. Frankl. Inst. 358(6), 3077–3126 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J., Wang, Z., Shen, Y., Wang, Y.: Interval observer design for discrete-time uncertain Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 27(4), 816–823 (2019)

    Article  Google Scholar 

  13. Marx, B., Ichalal, D., Ragot, J.: Interval state estimation for uncertain polytopic systems. Int. J. Control 93(11), 2564–2576 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moheimani, S.R., Savkin, A., Petersen, I.: Necessary and sufficient conditions for robust observability of a class of discrete-time uncertain systems. In: Proceedings of 35th IEEE Conference on Decision and Control. IEEE

    Google Scholar 

  15. Ramezanifar, A., Mohammadpour, J., Grigoriadis, K.: Sampled-data control of LPV systems using input delay approach. In: IEEE Conference on Decision and Control. IEEE, Dec. 2012

    Google Scholar 

  16. Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 36(10), 1401–1425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Seo, J., Chung, D., Park, C., Jee, G.-I.: The robustness of controllability and observability for discrete linear time-varying systems with norm-bounded uncertainty. IEEE Trans. Autom. Control 50, 1039 – 1043, 08 (2005)

    Google Scholar 

  18. Shamma, J.S., Athans, M.: Guaranteed properties of gain scheduled control for linear parameter-varying plants. Automatica 27(3), 559–564 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tan, K., Grigoriadis, K., Wu, F.: Output-feedback control of LPV sampled-data systems. In: Proceedings of the American Control Conference. ACC. IEEE (2000)

    Google Scholar 

  20. Tóth, R., den Hof, P.V., Heuberger, P.: Discretisation of linear parameter-varying state-space representations. IET Control Theory Appl. 4(10), 2082–2096 (2010)

    Article  MathSciNet  Google Scholar 

  21. Volterra, V., Hostinský, B.: Opérations infinitésimales linéaires, applications aux équations différentielles et fonctionnelles. Gauthier-Villars (1938)

    Google Scholar 

  22. Vu, V.-P., Wang, W.-J., Zurada, J.M., Chen, H.-C., Chiu, C.-H.: Unknown input method based observer synthesis for a discrete time uncertain T-S fuzzy system. IEEE Trans. Fuzzy Syst. 26(2), 761–770 (2018)

    Article  Google Scholar 

  23. Youssef, T., Karimi, H.R., Chadli, M.: Faults diagnosis based on proportional integral observer for TS fuzzy model with unmeasurable premise variable. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, July 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustave Bainier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bainier, G., Ponsart, JC., Marx, B. (2023). Anticipating the Loss of Unknown Input Observability for Sampled LPV Systems. In: Theilliol, D., Korbicz, J., Kacprzyk, J. (eds) Recent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis. ACD 2022. Studies in Systems, Decision and Control, vol 467. Springer, Cham. https://doi.org/10.1007/978-3-031-27540-1_2

Download citation

Publish with us

Policies and ethics