Skip to main content

Complications Associated with Surgical Treatment of Pediatric and Adult Spondylolisthesis

  • Chapter
  • First Online:
Spondylolisthesis

Abstract

Numerous surgical procedures exist to treat pediatric and adult spondylolisthesis; however, these surgeries are associated with many complications. The risk associated with these complications depends on patient factors and the various surgical techniques undertaken. Common complications include neurologic deficit, pseudarthrosis, adjacent segment disease, and slip progression. These complications may result in revision surgeries, negatively impact the patient’s quality of life, and place a significant burden on the affected family. Therefore, minimizing the risk of complications after spine surgery should be a priority for every spine surgeon. This chapter discusses the potential incidence, risk factors, diagnostic considerations, and recommended management of these complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasliwal MK, Smith JS, Shaffrey CI, Saulle D, Lenke LG, Polly DW Jr, et al. Short-term complications associated with surgery for high-grade spondylolisthesis in adults and pediatric patients: a report from the scoliosis research society morbidity and mortality database. Neurosurgery. 2012;71(1):109–16.

    Article  PubMed  Google Scholar 

  2. Nielsen E, Andras LM, Siddiqui AA, Michael N, Garg S, Paloski M, et al. 40% reoperation rate in adolescents with spondylolisthesis. Spine Deform. 2020;8(5):1059–67.

    Article  PubMed  Google Scholar 

  3. Gonçalves Barsotti CE, Aguiar Lira RC, Andrade RM, Torini AP, Ribeiro AP. L5 radiculopathy after formal reduction of high-grade SDSG type 5 and 6 L5-S1 isthmic spondylolisthesis with 2-year follow-up. Int J Spine Surg. 2021;15(4):645–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petraco DM, Spivak JM, Cappadona JG, Kummer FJ, Neuwirth MG. An anatomic evaluation of L5 nerve stretch in spondylolisthesis reduction. Spine. 1996;21(10):1133–8; discussion 9.

    Article  CAS  PubMed  Google Scholar 

  5. Longo UG, Loppini M, Romeo G, Maffulli N, Denaro V. Evidence-based surgical management of spondylolisthesis: reduction or arthrodesis in situ. J Bone Joint Surg Am. 2014;96(1):53–8.

    Article  PubMed  Google Scholar 

  6. Lak AM, Abunimer AM, Devi S, Chawla S, Aydin L, Tafel I, et al. Reduction versus in situ fusion for adult high-grade spondylolisthesis: a systematic review and meta-analysis. World Neurosurg. 2020;138:512–20.e2.

    Article  PubMed  Google Scholar 

  7. Schär RT, Sutter M, Mannion AF, EggspĂ¼hler A, Jeszenszky D, Fekete TF, et al. Outcome of L5 radiculopathy after reduction and instrumented transforaminal lumbar interbody fusion of high-grade L5-S1 isthmic spondylolisthesis and the role of intraoperative neurophysiological monitoring. Eur Spine J. 2017;26(3):679–90.

    Article  PubMed  Google Scholar 

  8. Kornblum MB, Fischgrund JS, Herkowitz HN, Abraham DA, Berkower DL, Ditkoff JS. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective long-term study comparing fusion and pseudarthrosis. Spine. 2004;29(7):726–33; discussion 33–4.

    Article  PubMed  Google Scholar 

  9. Ogilvie JW. Complications in spondylolisthesis surgery. Spine. 2005;30(6 Suppl):S97–101.

    Article  PubMed  Google Scholar 

  10. Chun DS, Baker KC, Hsu WK. Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurg Focus. 2015;39(4):E10.

    Article  PubMed  Google Scholar 

  11. Hirase T, Ling JF, Haghshenas V, Weiner BK. Instrumented versus noninstrumented spinal fusion for degenerative lumbar spondylolisthesis: a systematic review. Clin Spine Surg. 2022;35(5):213–21.

    Article  PubMed  Google Scholar 

  12. Carpenter CT, Dietz JW, Leung KY, Hanscom DA, Wagner TA. Repair of a pseudarthrosis of the lumbar spine. A functional outcome study. J Bone Joint Surg Am. 1996;78(5):712–20.

    Article  CAS  PubMed  Google Scholar 

  13. Mulholland RC. Degenerative lumbar spondylolisthesis: a meta-analysis of literature 1970-1993. Spine. 1995;20(17):1957–8.

    Article  CAS  PubMed  Google Scholar 

  14. Oster BA, Kikanloo SR, Levine NL, Lian J, Cho W. Systematic review of outcomes following 10-year mark of spine patient outcomes research trial (SPORT) for degenerative spondylolisthesis. Spine. 2020;45(12):820–4.

    Article  PubMed  Google Scholar 

  15. Cruz A, Ropper AE, Xu DS, Bohl M, Reece EM, Winocour SJ, et al. Failure in lumbar spinal fusion and current management modalities. Semin Plast Surg. 2021;35(1):54–62.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, et al. Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int. 2007;18(9):1219–24.

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang XM, Yu BS, Zheng ZM, Zhang JF, Lu WW. Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws. Spine. 2010;35(19):E925–31.

    Article  PubMed  Google Scholar 

  18. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1(6):402–7.

    Article  CAS  PubMed  Google Scholar 

  19. Chen F, Dai Z, Kang Y, Lv G, Keller ET, Jiang Y. Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporos Int. 2016;27(4):1469–76.

    Article  CAS  PubMed  Google Scholar 

  20. Ebata S, Takahashi J, Hasegawa T, Mukaiyama K, Isogai Y, Ohba T, et al. Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: a multicenter, prospective randomized study. J Bone Joint Surg Am. 2017;99(5):365–72.

    Article  PubMed  Google Scholar 

  21. Glassman SD, Alegre G, Carreon L, Dimar JR, Johnson JR. Perioperative complications of lumbar instrumentation and fusion in patients with diabetes mellitus. Spine J. 2003;3(6):496–501.

    Article  PubMed  Google Scholar 

  22. NaPier Z, Kanim LEA, Nelson TJ, Salehi K, Arabi Y, Glaeser JD, et al. The effect of insulin-dependent diabetes on bone metabolism and growth after spinal fusion. Spine J. 2020;20(5):800–8.

    Article  PubMed  Google Scholar 

  23. Daftari TK, Whitesides TE Jr, Heller JG, Goodrich AC, McCarey BE, Hutton WC. Nicotine on the revascularization of bone graft. An experimental study in rabbits. Spine. 1994;19(8):904–11.

    Article  CAS  PubMed  Google Scholar 

  24. Theiss SM, Boden SD, Hair G, Titus L, Morone MA, Ugbo J. The effect of nicotine on gene expression during spine fusion. Spine. 2000;25(20):2588–94.

    Article  CAS  PubMed  Google Scholar 

  25. Macki M, Syeda S, Rajjoub KR, Kerezoudis P, Bydon A, Wolinsky JP, et al. The effect of smoking status on successful arthrodesis after lumbar instrumentation supplemented with rhBMP-2. World Neurosurg. 2017;97:459–64.

    Article  PubMed  Google Scholar 

  26. Berman D, Oren JH, Bendo J, Spivak J. The effect of smoking on spinal fusion. Int J Spine Surg. 2017;11(4):29.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carlson BB, Burton DC, Jackson RS, Robinson S. Recidivism rates after smoking cessation before spinal fusion. Orthopedics. 2016;39(2):e318–22.

    Article  PubMed  Google Scholar 

  28. Kurd MF, Kreitz T, Schroeder G, Vaccaro AR. The role of multimodal analgesia in spine surgery. J Am Acad Orthop Surg. 2017;25(4):260–8.

    Article  PubMed  Google Scholar 

  29. Kinsella J, Moffat AC, Patrick JA, Prentice JW, McArdle CS, Kenny GN. Ketorolac trometamol for postoperative analgesia after orthopaedic surgery. Br J Anaesth. 1992;69(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Ajiboye RM, Orden MH, Sharma A, Drysch A, Pourtaheri S. The effect of ketorolac on thoracolumbar posterolateral fusion: a systematic review and meta-analysis. Clin Spine Surg. 2018;31(2):65–72.

    Article  PubMed  Google Scholar 

  31. Pradhan BB, Tatsumi RL, Gallina J, Kuhns CA, Wang JC, Dawson EG. Ketorolac and spinal fusion: does the perioperative use of ketorolac really inhibit spinal fusion? Spine. 2008;33(19):2079–82.

    Article  PubMed  Google Scholar 

  32. Lee C, Dorcil J, Radomisli TE. Nonunion of the spine: a review. Clin Orthop Relat Res. 2004;419:71–5.

    Article  Google Scholar 

  33. Gruskay JA, Webb ML, Grauer JN. Methods of evaluating lumbar and cervical fusion. Spine J. 2014;14(3):531–9.

    Article  PubMed  Google Scholar 

  34. Buchowski JM, Liu G, Bunmaprasert T, Rose PS, Riew KD. Anterior cervical fusion assessment: surgical exploration versus radiographic evaluation. Spine. 2008;33(11):1185–91.

    Article  PubMed  Google Scholar 

  35. Raizman NM, O’Brien JR, Poehling-Monaghan KL, Yu WD. Pseudarthrosis of the spine. J Am Acad Orthop Surg. 2009;17(8):494–503.

    Article  PubMed  Google Scholar 

  36. Choudhri TF, Mummaneni PV, Dhall SS, Eck JC, Groff MW, Ghogawala Z, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 4: radiographic assessment of fusion status. Journal of neurosurgery. Spine. 2014;21(1):23–30.

    PubMed  Google Scholar 

  37. Bodalia PN, Balaji V, Kaila R, Wilson L. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: a systematic review. Bone Joint Res. 2016;5(4):145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simmonds MC, Brown JV, Heirs MK, Higgins JP, Mannion RJ, Rodgers MA, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual participant data. Ann Intern Med. 2013;158(12):877–89.

    Article  PubMed  Google Scholar 

  39. Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902.

    Article  PubMed  Google Scholar 

  40. Molinari RW, Kerr C, Kerr D. Bone morphogenetic protein in pediatric spine fusion surgery. J Spine Surg (Hong Kong). 2016;2(1):9–12.

    Article  Google Scholar 

  41. Nwachukwu BU, Schairer WW, Pan T, Widmann RF, Blanco JS, Green DW, et al. Bone morphogenetic proteins in pediatric spinal arthrodesis: a statewide analysis of trends and outcome of utilization. J Pediatr Orthop. 2017;37(6):e369–74.

    Article  PubMed  Google Scholar 

  42. Formica M, Vallerga D, Zanirato A, Cavagnaro L, Basso M, Divano S, et al. Fusion rate and influence of surgery-related factors in lumbar interbody arthrodesis for degenerative spine diseases: a meta-analysis and systematic review. Musculoskelet Surg. 2020;104(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  43. de Kunder SL, van Kuijk SMJ, Rijkers K, Caelers I, van Hemert WLW, de Bie RA, et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J. 2017;17(11):1712–21.

    Article  PubMed  Google Scholar 

  44. Norheim EP, Royse KE, Brara HS, Moller DJ, Suen PW, Rahman SU, et al. PLF+PS or ALIF+PS: which has a lower operative nonunion rate? Analysis of a cohort of 2,061 patients from a National Spine Registry. Spine J. 2021;21(7):1118–25.

    Article  PubMed  Google Scholar 

  45. Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine. 2004;29(17):1938–44.

    Article  PubMed  Google Scholar 

  46. Kimura I, Shingu H, Murata M, Hashiguchi H. Lumbar posterolateral fusion alone or with transpedicular instrumentation in L4–L5 degenerative spondylolisthesis. J Spinal Disord. 2001;14(4):301–10.

    Article  CAS  PubMed  Google Scholar 

  47. Fiani B, Kondilis A, Runnels J, Rippe P, Davati C. Pulsed electromagnetic field stimulators efficacy for noninvasive bone growth in spine surgery. J Korean Neurosurg Society. 2021;64(4):486–94.

    Article  Google Scholar 

  48. Ekman P, Möller H, Shalabi A, Yu YX, Hedlund R. A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration. Eur Spine J. 2009;18(8):1175–86.

    Google Scholar 

  49. Xia XP, Chen HL, Cheng HB. Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis. Spine. 2013;38(7):597–608.

    Article  PubMed  Google Scholar 

  50. Hashimoto K, Aizawa T, Kanno H, Itoi E. Adjacent segment degeneration after fusion spinal surgery-a systematic review. Int Orthop. 2019;43(4):987–93.

    Article  PubMed  Google Scholar 

  51. Sears WR, Sergides IG, Kazemi N, Smith M, White GJ, Osburg B. Incidence and Prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J. 2011;11(1):11–20.

    Article  PubMed  Google Scholar 

  52. Matsumoto T, Okuda S, Maeno T, Yamashita T, Yamasaki R, Sugiura T, et al. Spinopelvic sagittal imbalance as a risk factor for adjacent-segment disease after single-segment posterior lumbar interbody fusion. J Neurosurg Spine. 2017;26(4):435–40.

    Article  PubMed  Google Scholar 

  53. Boxall D, Bradford DS, Winter RB, Moe JH. Management of severe spondylolisthesis in children and adolescents. J Bone Joint Surg Am. 1979;61(4):479–95.

    Article  CAS  PubMed  Google Scholar 

  54. Bednar DA. Surgical management of lumbar degenerative spinal stenosis with spondylolisthesis via posterior reduction with minimal laminectomy. J Spinal Disord Tech. 2002;15(2):105–9.

    Article  PubMed  Google Scholar 

  55. Steinhaus ME, Vaishnav AS, Shah SP, Clark NJ, Chaudhary CB, Othman YA, et al. Does loss of spondylolisthesis reduction impact clinical and radiographic outcomes after minimally invasive transforaminal lumbar interbody fusion? Spine J. 2022;22(1):95–103.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence G. Lenke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, N.J., Quiles Luna, C.T., Lenke, L.G. (2023). Complications Associated with Surgical Treatment of Pediatric and Adult Spondylolisthesis. In: Wollowick, A.L., Sarwahi, V. (eds) Spondylolisthesis. Springer, Cham. https://doi.org/10.1007/978-3-031-27253-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27253-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27252-3

  • Online ISBN: 978-3-031-27253-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics