Skip to main content

Specific Physical Exercises Adapt to Patients with Obesity or with Diabetes Mellitus (Type 1 and Type 2)

  • Chapter
  • First Online:
Cellular Physiology and Metabolism of Physical Exercise
  • 238 Accesses

Abstract

Physical inactivity, sedentarism, and obesity were always considered pandemics and are associated with poor quality of life and increased risks for chronic conditions. Quite the opposite, physical activity is advocated as a cornerstone in the prevention and cure of a variety of inflammatory chronic diseases, including type 2 diabetes, cardiovascular diseases, and cancer. While favorable exercise effects on immune functions and metabolism are well established, system responses are dependent on several factors (type, intensity, and duration of exercise) which should be cautiously orchestrated. In this chapter, exercise training protocols in the context of weight loss and glucose homeostasis are examined. The ultimate end would be to furnish evidence and guidance for all these patients suffering from dysmetabolic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das P, Horton R. Rethinking our approach to physical activity. Lancet. 2012;380:189–90.

    Article  PubMed  Google Scholar 

  2. Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  CAS  PubMed  Google Scholar 

  4. Viardot A, Heilbronn LK, Samocha-Bonet D, Mackay F, Campbell LV, Samaras K. Obesity is associated with activated and insulin resistant immune cells. Diabetes Metab Res Rev. 2012;28:447. https://doi.org/10.1002/dmrr.2302.

    Article  CAS  PubMed  Google Scholar 

  5. Winer S, Chan Y, Paltser G, et al. Normalization of obesity-associated insulin resistance through immunotherapy: Discovery Service for Endeavour College of natural health library. Nat Med. 2009;15:921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nat Rev Immunol. 2011;11:81–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alibegovic AC, Sonne MP, Højbjerre L, et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Metab. 2010;299:E752–63.

    CAS  Google Scholar 

  8. Bowden Davies KA, Sprung VS, Norman JA, Thompson A, Mitchell KL, Halford JCG, Harrold JA, Wilding JPH, Kemp GJ, Cuthbertson DJ. Short-term decreased physical activity with increased sedentary behaviour causes metabolic derangements and altered body composition: effects in individuals with and without a first-degree relative with type 2 diabetes. Diabetologia. 2018;61:1282–94.

    Article  PubMed  Google Scholar 

  9. Saint-Maurice PF, Troiano RP, Bassett DR, Graubard BI, Carlson SA, Shiroma EJ, Fulton JE, Matthews CE. Association of daily step count and step intensity with mortality among US adults. JAMA. 2020;323:1151.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, Bauman AE, van der Ploeg HP. Daily sitting time and all-cause mortality: a meta-analysis. PloS One. 2013;8:e80000.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blair SN. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA J Am Med Assoc. 1989;262:2395–401.

    Article  CAS  Google Scholar 

  12. Zampieri S, Pietrangelo L, Loefler S, et al. Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol Ser A Biol Sci Med Sci. 2015;70:163–73.

    Article  CAS  Google Scholar 

  13. Codella R, Luzi L, Inverardi L, Ricordi C. The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity. Eur Rev Med Pharmacol Sci. 2015;19:3709–22.

    CAS  PubMed  Google Scholar 

  14. Della Guardia L, Codella R. Exercise tolls the bell for key mediators of low-grade inflammation in dysmetabolic conditions. Cytokine Growth Factor Rev. 2021;62:83–93.

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived Interleukin-6. Physiol Rev. 2008;88:1379–406.

    Article  CAS  PubMed  Google Scholar 

  16. Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011;17:1481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carey AL, Steinberg GR, Macaulay SL, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55:2688–97.

    Article  CAS  PubMed  Google Scholar 

  18. Perera P-Y, Lichy JH, Waldmann TA, Perera LP. The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use. Microbes Infect. 2012;14:247–61.

    Article  CAS  PubMed  Google Scholar 

  19. Pedersen BK, Nieman DC. Exercise immunology: integration and regulation. Immunol Today. 1998;19:204–6.

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen BK, Ullum H. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc. 1994;26:140–6.

    Article  CAS  PubMed  Google Scholar 

  21. Codella R, Terruzzi I, Luzi L. Sugars, exercise and health. J Affect Disord. 2017;224:76–86.

    Article  PubMed  Google Scholar 

  22. Pedersen BK, Saltin B. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25:1–72.

    Article  PubMed  Google Scholar 

  23. Codella R, Luzi L, Terruzzi I. Exercise has the guts: how physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis. 2017;50:331. https://doi.org/10.1016/j.dld.2017.11.016.

    Article  PubMed  Google Scholar 

  24. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P. Exercise induces a marked increase in plasma Follistatin: evidence that Follistatin is a contraction-induced Hepatokine. Endocrinology. 2011;152:164–71.

    Article  CAS  PubMed  Google Scholar 

  25. Stewart LK, Flynn MG, Campbell WW, Craig BA, Robinson JP, McFarlin BK, Timmerman KL, Coen PM, Felker J, Talbert E. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun. 2005;19:389–97.

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Song H, Tang X, Yang Y, Vieira VJ, Niu Y, Ma Y. Effect of exercise training intensity on murine T-regulatory cells and vaccination response. Scand J Med Sci Sports. 2012;22:643–52.

    Article  CAS  PubMed  Google Scholar 

  27. Atalay M, Oksala NKJ, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, Roy S, Hänninen O, Sen CK. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol. 2004;97:605–11.

    Article  CAS  PubMed  Google Scholar 

  28. Morimoto RI, Santoro MG. Stress–inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 1998;16:833–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kennedy JW, Hirshman MF, Gervino EV, Ocel JV, Forse RA, Hoenig SJ, Aronson D, Goodyear LJ, Horton ES. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48:1192–7.

    Article  CAS  PubMed  Google Scholar 

  30. Sakamoto K, Goodyear LJ. Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol. 2002;93:369–83.

    Article  CAS  PubMed  Google Scholar 

  31. Wojtaszewski JFP, Nielsen JN, Richter EA. Invited review: effect of acute exercise on insulin signaling and action in humans. J Appl Physiol. 2002;93:384–92.

    Article  CAS  PubMed  Google Scholar 

  32. Coderre L, Kandror KV, Vallega G, Pilch PF. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem. 1995;270:27584–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi T, Wojtaszewski JFP, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol Endocrinol Metab. 1997;273:E1039–51.

    Article  CAS  Google Scholar 

  34. Goodyear LJ, Giorgino F, Balon TW, Condorelli G, Smith RJ. Effects of contractile activity on tyrosine phosphoproteins and PI 3- kinase activity in rat skeletal muscle. Am J Physiol Endocrinol Metab. 1995;268:E987–95.

    Article  CAS  Google Scholar 

  35. Wojtaszewski JFP, Hansen BF, Ursø B, Richter EA. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol. 1996;81:1501–9.

    Article  CAS  PubMed  Google Scholar 

  36. Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A. 1995;92:5817–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manetta J, Brun JF, Mercier J, Prefaut C. The effects of exercise training intensification on glucose disposal in elite cyclists. Int J Sports Med. 2000;21:338–43.

    Article  CAS  PubMed  Google Scholar 

  38. Wasfy MM, Baggish AL. Exercise dose in clinical practice. Circulation. 2016;133:2297–313.

    Article  PubMed  PubMed Central  Google Scholar 

  39. WHO. WHO guidelines on physical activity and sedentary behaviour. Geneva: WHO; 2020.

    Google Scholar 

  40. Dalleck LC, Tischendorf JS. Guidelines for exercise testing and prescription (ACSM). Encycl Lifestyle Med Heal. 2012. https://doi.org/10.4135/9781412994149.n165.

  41. Codella R, Della GL. The conundrum of exercise dose: when the unknown gets knowable. J Mens health. 2022;18:079.

    Article  Google Scholar 

  42. Stamatakis E, Lee I-M, Bennie J, Freeston J, Hamer M, O’Donovan G, Ding D, Bauman A, Mavros Y. Does strength-promoting exercise confer unique health benefits? A pooled analysis of data on 11 population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. Am J Epidemiol. 2018;187:1102–12.

    Article  PubMed  Google Scholar 

  43. Wadén J, Forsblom C, Thorn LM, Saraheimo M, Rosengård-Bärlund M, Heikkilä O, Lakka TA, Tikkanen H, Groop P-H. Physical activity and diabetes complications in patients with type 1 diabetes. Diabetes Care. 2008;31:230–2.

    Article  PubMed  Google Scholar 

  44. Tielemans SMAJ, Soedamah-Muthu SS, De Neve M, Toeller M, Chaturvedi N, Fuller JH, Stamatakis E. Association of physical activity with all-cause mortality and incident and prevalent cardiovascular disease among patients with type 1 diabetes: the EURODIAB prospective complications study. Diabetologia. 2013;56:82–91.

    Article  CAS  PubMed  Google Scholar 

  45. Tikkanen-Dolenc H, Wadén J, Forsblom C, et al. Frequent and intensive physical activity reduces risk of cardiovascular events in type 1 diabetes. Diabetologia. 2017;60:574–80.

    Article  CAS  PubMed  Google Scholar 

  46. Mason NJ, Jenkins AJ, Best JD, Rowley KG. Exercise frequency and arterial compliance in non-diabetic and type 1 diabetic individuals. Eur J Cardiovasc Prev Rehabil. 2006;13:598–603.

    Article  PubMed  Google Scholar 

  47. Pongrac Barlovic D, Tikkanen-Dolenc H, Groop P-H. Physical activity in the prevention of development and progression of kidney disease in type 1 diabetes. Curr Diab Rep. 2019;19:41.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kriska AM, LaPorte RE, Patrick SL, Kuller LH, Orchard TJ. The association of physical activity and diabetic complications in individuals with insulin-dependent diabetes mellitus: the epidemiology of diabetes complications study—VII. J Clin Epidemiol. 1991;44:1207–14.

    Article  CAS  PubMed  Google Scholar 

  49. Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012;55:542–51.

    Article  CAS  PubMed  Google Scholar 

  50. Adamo M, Codella R, Casiraghi F, Ferrulli A, Macrì C, Bazzigaluppi E, Terruzzi I, Inverardi L, Ricordi C, Luzi L. Active subjects with autoimmune type 1 diabetes have better metabolic profiles than sedentary controls. Cell Transplant. 2017;26:23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Frid A, Östman J, Linde B. Hypoglycemia risk during exercise after intramuscular injection of insulin in thigh in IDDM. Diabetes Care. 1990;13:473–7.

    Article  CAS  PubMed  Google Scholar 

  53. Codella R, Terruzzi I, Luzi L. Why should people with type 1 diabetes exercise regularly? Acta Diabetol. 2017;54:615–30.

    Article  PubMed  Google Scholar 

  54. Riddell MC, Gallen IW, Smart CE, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5:377–90.

    Article  PubMed  Google Scholar 

  55. O’Donoghue G, Blake C, Cunningham C, Lennon O, Perrotta C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obes Rev. 2021;22:e13137. https://doi.org/10.1111/obr.13137.

    Article  PubMed  Google Scholar 

  56. Shaw KA, Gennat HC, O’Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;2006:CD003817. https://doi.org/10.1002/14651858.CD003817.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rossi FE, Fortaleza ACS, Neves LM, Buonani C, Picolo MR, Diniz TA, Kalva-Filho CA, Papoti M, Lira FS, Freitas Junior IF. Combined training (aerobic plus strength) potentiates a reduction in body fat but demonstrates no difference on the lipid profile in postmenopausal women when compared with aerobic training with a similar training load. J Strength Cond Res. 2016;30:226–34.

    Article  PubMed  Google Scholar 

  58. Jin C-H, Rhyu H-S, Kim JY. The effects of combined aerobic and resistance training on inflammatory markers in obese men. J Exerc Rehabil. 2018;14:660–5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee JS, Kim CG, Seo TB, Kim HG, Yoon SJ. Effects of 8-week combined training on body composition, isokinetic strength, and cardiovascular disease risk factors in older women. Aging Clin Exp Res. 2015;27:179–86.

    Article  PubMed  Google Scholar 

  60. Neeland IJ, Ross R, Després J-P, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7:715–25.

    Article  PubMed  Google Scholar 

  61. Slentz CA, Bateman LA, Willis LH, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Physiol Metab. 2011;301:E1033–9.

    CAS  Google Scholar 

  62. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459–71.

    Article  PubMed  Google Scholar 

  63. Patel P, Abate N. Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. J Obes. 2013;2013:1–5.

    Google Scholar 

  64. Ross R, Bradshaw AJ. The future of obesity reduction: beyond weight loss. Nat Rev Endocrinol. 2009;5:319–25.

    Article  PubMed  Google Scholar 

  65. Saris WHM, Blair SN, van Baak MA, et al. How much physical activity is enough to prevent unhealthy weight gain? Outcome of the IASO 1st stock conference and consensus statement. Obes Rev. 2003;4:101–14.

    Article  CAS  PubMed  Google Scholar 

  66. Johnson NA, Sultana RN, Brown WJ, Bauman AE, Gill T. Physical activity in the management of obesity in adults: a position statement from exercise and sport science Australia. J Sci Med Sport. 2021;24:1245–54.

    Article  PubMed  Google Scholar 

  67. Pontzer H, Durazo-Arvizu R, Dugas LR, Plange-Rhule J, Bovet P, Forrester TE, Lambert EV, Cooper RS, Schoeller DA, Luke A. Constrained Total energy expenditure and metabolic adaptation to physical activity in adult humans. Curr Biol. 2016;26:410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sumithran P, Proietto J. The defence of body weight: a physiological basis for weight regain after weight loss. Clin Sci. 2013;124:231–41.

    Article  Google Scholar 

  69. Jelleyman C, Yates T, O’Donovan G, Gray LJ, King JA, Khunti K, Davies MJ. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16:942–61.

    Article  CAS  PubMed  Google Scholar 

  70. Liu J, Zhu L, Li P, Li N, Xu Y. Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging Clin Exp Res. 2019;31:575–93.

    Article  PubMed  Google Scholar 

  71. Lucotti P, Monti LD, Setola E, Galluccio E, Gatti R, Bosi E, Piatti P. Aerobic and resistance training effects compared to aerobic training alone in obese type 2 diabetic patients on diet treatment. Diabetes Res Clin Pract. 2011;94:395–403.

    Article  PubMed  Google Scholar 

  72. Codella R, Ialacqua M, Terruzzi I, Luzi L. May the force be with you: why resistance training is essential for subjects with type 2 diabetes mellitus without complications. Endocrine. 2018;62:14. https://doi.org/10.1007/s12020-018-1603-7.

    Article  CAS  PubMed  Google Scholar 

  73. Frimel TN, Sinacore DR, Villareal DT. Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. Med Sci Sports Exerc. 2008;40:1213–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Codella R, Terruzzi I, Luzi L. Treatment of diabetes with lifestyle changes: physical activity; 2018. p. 513–26.

    Google Scholar 

  75. Balducci S, Leonetti F, Di Mario U, Fallucca F. Is a long-term aerobic plus resistance training program feasible for and effective on metabolic profiles in type 2 diabetic patients? Diabetes Care. 2004;27:841–2.

    Article  PubMed  Google Scholar 

  76. Savikj M, Zierath JR. Train like an athlete: applying exercise interventions to manage type 2 diabetes. Diabetologia. 2020;63(8):1491–499. https://doi.org/10.1007/s00125-020-05166-9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Codella .

Editor information

Editors and Affiliations

Ethics declarations

No potential conflicts of interest relevant to this chapter were reported.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Codella, R. (2023). Specific Physical Exercises Adapt to Patients with Obesity or with Diabetes Mellitus (Type 1 and Type 2). In: Luzi, L. (eds) Cellular Physiology and Metabolism of Physical Exercise. Springer, Cham. https://doi.org/10.1007/978-3-031-27192-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27192-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27191-5

  • Online ISBN: 978-3-031-27192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics