Skip to main content

Abstract

The lung parenchyma—consisting of gas-filled alveoli, vasculature, and connective tissue—is the site for gas exchange in the lung and plays a critical role in a number of chronic lung diseases. In vitro models of lung parenchyma can, therefore, provide valuable platforms for the study of lung biology in health and disease. Yet modeling such a complex tissue requires integrating multiple components, including biochemical cues from the extracellular environment, geometrically defined multicellular interactions, and dynamic mechanical inputs such as the cyclic stretch of breathing. In this chapter, we provide an overview of the broad spectrum of model systems that have been developed to recapitulate one or more features of lung parenchyma, and some of the scientific advances generated by those models. We discuss the use of both synthetic and naturally derived hydrogel materials, precision-cut lung slices, organoids, and lung-on-a-chip devices, with perspectives on the strengths, weaknesses, and potential future directions of these engineered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aimar, A., Palermo, A., & Innocenti, B. (2019). The Role of 3D Printing in Medical Applications: A State of the Art. J Healthc Eng, 2019, 5340616. https://doi.org/10.1155/2019/5340616.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aisenbrey, E. A., & Murphy, W. L. (2020). Synthetic alternatives to Matrigel. Nature reviews. Materials, 5(7). https://doi.org/10.1038/s41578-020-0199-8.

  3. Al Jamal, R., Roughley, P., & Ludwig, M. (2001). Effect of glycosaminoglycan degradation on lung tissue viscoelasticity. American journal of physiology. Lung cellular and molecular physiology, 280(2). https://doi.org/10.1152/ajplung.2001.280.2.L306.

  4. Alsafadi, H. N., Uhl, F. E., Pineda, R. H., Bailey, K. E., Rojas, M., Wagner, D. E., et al. (2020). Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. American journal of respiratory cell and molecular biology, 62(6). https://doi.org/10.1165/rcmb.2019-0276TR.

  5. Bailey, K. E., Floren, M. L., D’Ovidio, T. J., Lammers, S. R., Stenmark, K. R., & Magin, C. M. (2019). Tissue-informed engineering strategies for modeling human pulmonary diseases. American journal of physiology. Lung cellular and molecular physiology, 316(2). https://doi.org/10.1152/ajplung.00353.2018.

  6. Bailey, K. E., Pino, C., Lennon, M. L., Lyons, A., Jacot, J. G., Lammers, S. R., et al. (2020). Embedding of Precision-Cut Lung Slices in Engineered Hydrogel Biomaterials Supports Extended Ex Vivo Culture. American journal of respiratory cell and molecular biology, 62(1). https://doi.org/10.1165/rcmb.2019-0232MA.

  7. Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L., & Bashir, R. (2014). 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng, 16, 247–76. https://doi.org/10.1146/annurev-bioeng-071813-105155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baptista, D., Teixeira, L., Blitterswijk, C. van Giselbrecht, S., & Truckenmüller, R. (2019). Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends in biotechnology, 37(8). https://doi.org/10.1016/j.tibtech.2019.01.006.

  9. Bates, J. H. T., & Irvin, C. G. (2002). Time dependence of recruitment and derecruitment in the lung: a theoretical model. Journal of Applied Physiology, 93, 705–713. https://doi.org/10.1152/japplphysiol.01274.2001.

  10. Ben-Tal, A. (2006). Simplified models for gas exchange in the human lungs. Journal of Theoretical Biology, 238, 474–495. https://doi.org/10.1016/j.jtbi.2005.06.005.

  11. Bilodeau, C., Shojaie, S., Goltsis, O., Wang, J., Luo, D., Ackerley, C., et al. (2021). TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regenerative medicine, 6(1). https://doi.org/10.1038/s41536-021-00124-4.

  12. Blomberg, R., Sompel, K., Hauer, C., Peña, B., Driscoll, J., Hume, P. S., Merrick, D. T., Tennis, M. A., & Magin, C. M. (2023). Tissue-engineered models of lung cancer premalignancy. bioRxiv. https://doi.org/10.1101/2023.03.15.532835

  13. Booth, A. J., Hadley, R., Cornett, A. M., Dreffs, A. A., Matthes, S. A., Tsui, J. L., et al. (2012). Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. American journal of respiratory and critical care medicine, 186(9). https://doi.org/10.1164/rccm.201204-0754OC.

  14. Brown, T. E., & Anseth, K. S. (2017). Spatiotemporal hydrogel biomaterials for regenerative medicine. Chemical Society reviews, 46(21). https://doi.org/10.1039/c7cs00445a.

  15. Burgstaller, G., Gerckens, M., Eickelberg, O., & Königshoff, M. (2021). Decellularized Human Lung Scaffolds as Complex Three-Dimensional Tissue Culture Models to Study Functional Behavior of Fibroblasts. Methods in molecular biology (Clifton, N.J.), 2299. https://doi.org/10.1007/978-1-0716-1382-5_30.

  16. Burrowes, K. S., Swan, A. J., Warren, N. J., & Tawhai, M. H. (2008). Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 366(1879). https://doi.org/10.1098/rsta.2008.0073.

  17. Bölükbas, D. A., Santis, M. M. D., Alsafadi, H. N., Doryab, A., & Wagner, D. E. (2019). The Preparation of Decellularized Mouse Lung Matrix Scaffolds for Analysis of Lung Regenerative Cell Potential. Methods in molecular biology (Clifton, N.J.), 1940. https://doi.org/10.1007/978-1-4939-9086-3_20.

  18. Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E., & Zadpoor, A. A. (2020). Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials, 232. https://doi.org/10.1016/j.biomaterials.2019.119739.

  19. Caracena, T., Blomberg, R., Hewawasam, R. S., Fry, Z. E., Riches, D. W. H., & Magin, C. M. (2022). Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomaterials Science. https://doi.org/10.1039/d2bm00827k.

  20. Cedilak, M., Banjanac, M., Belamarić, D., Radičević, A. P., Faraho, I., Ilić, K., et al. (2019). Precision-cut lung slices from bleomycin treated animals as a model for testing potential therapies for idiopathic pulmonary fibrosis. Pulmonary pharmacology & therapeutics, 55. https://doi.org/10.1016/j.pupt.2019.02.005.

  21. Chen, Y.-W., Huang, S. X., Carvalho, A. L. R. T. de Ho, S.-H., Islam, M. N., Volpi, S., et al. (2017). A three-dimensional model of human lung development and disease from pluripotent stem cells (Text). https://doi.org/10.1038/ncb3510.

  22. Chimene, D., Kaunas, R., & Gaharwar, A. K. (2020). Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Advanced materials (Deerfield Beach, Fla.), 32(1). https://doi.org/10.1002/adma.201902026.

  23. Correll, K. A., Edeen, K. E., Zemans, R. L., Redente, E. F., Serban, K. A., Curran-Everett, D., et al. (2019). Transitional human alveolar type II epithelial cells suppress extracellular matrix and growth factor gene expression in lung fibroblasts. American Journal of Physiology-Lung Cellular and Molecular Physiology, 317(2), L283–L294. https://doi.org/10.1152/ajplung.00337.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12). https://doi.org/10.1016/j.biomaterials.2011.01.057.

  25. Cui, X., Boland, T., D’Lima, D. D., & Lotz, M. K. (2012). Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery & formulation, 6(2). https://doi.org/10.2174/187221112800672949.

  26. Dabaghi, M., Saraei, N., Carpio, M. B., Nanduri, V., Ungureanu, J., Babi, M., et al. (2021). A Robust Protocol for Decellularized Human Lung Bioink Generation Amenable to 2D and 3D Lung Cell Culture. Cells, 10(6). https://doi.org/10.3390/cells10061538.

  27. Dassow, C., Wiechert, L., Martin, C., Schumann, S., Müller-Newen, G., Pack, O., et al. (2010). Biaxial distension of precision-cut lung slices. Journal of applied physiology (Bethesda, Md.: 1985), 108(3). https://doi.org/10.1152/japplphysiol.00229.2009.

  28. Davidovich, N., Huang, J., & Margulies, S. S. (2013). Reproducible uniform equibiaxial stretch of precision-cut lung slices. American journal of physiology. Lung cellular and molecular physiology, 304(4). https://doi.org/10.1152/ajplung.00224.2012.

  29. Davidson, M. D., Burdick, J. A., & Wells, R. G. (2020). Engineered Biomaterial Platforms to Study Fibrosis. Advanced healthcare materials, 9(8). https://doi.org/10.1002/adhm.201901682.

  30. Davis-Hall, D., Thomas, E., Peña, B., & Magin, C. M. (2023). 3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension. Biofabrication, 15(1), 015017. https://doi.org/10.1088/1758-5090/aca8cf.

  31. deHilster, R. H. J., Sharma, P. K., Jonker, M. R., White, E. S., Gercama, E. A., Roobeek, M., et al. (2020). Human lung extracellular matrix hydrogels resemble the stiffness and viscoelasticity of native lung tissue. American journal of physiology. Lung cellular and molecular physiology, 318(4). https://doi.org/10.1152/ajplung.00451.2019.

  32. DeSantis, M. M., Alsafadi, H. N., Tas, S., Bölükbas, D. A., Prithiviraj, S., Silva, I. A. N. D., et al. (2020). Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue. Advanced materials (Deerfield Beach, Fla.). https://doi.org/10.1002/adma.202005476.

  33. Dijk, E. M. V., Culha, S., Menzen, M. H., Bidan, C. M., & Gosens, R. (2017). Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model. Frontiers in physiology, 7. https://doi.org/10.3389/fphys.2016.00657.

  34. Dorrello, N. V., Guenthart, B. A., O’Neill, J. D., Kim, J., Cunningham, K., Chen, Y.-W., et al. (2017). Functional vascularized lung grafts for lung bioengineering. Science advances, 3(8). https://doi.org/10.1126/sciadv.1700521.

  35. Doryab, A. (2021). A Biomimetic, Copolymeric Membrane for Cell-Stretch Experiments with Pulmonary Epithelial Cells at the Air-Liquid Interface – Doryab – 2021 – Advanced Functional Materials – Wiley Online Library. https://doi.org/10.1002/adfm.202004707.

  36. Dye, B. R., Hill, D. R., Ferguson, M. A. H., Tsai, Y.-H., Nagy, M. S., Dyal, R., et al. (2015). In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 4. https://doi.org/10.7554/eLife.05098.

  37. Epa, A. P., Thatcher, T. H., Pollock, S. J., Wahl, L. A., Lyda, E., Kottmann, R. M., et al. (2015). Normal Human Lung Epithelial Cells Inhibit Transforming Growth Factor-β Induced Myofibroblast Differentiation via Prostaglandin E2. PloS one, 10(8). https://doi.org/10.1371/journal.pone.0135266.

  38. Felder, M., Trueeb, B., Stucki, A. O., Borcard, S., Stucki, J. D., Schnyder, B., et al. (2019). Impaired Wound Healing of Alveolar Lung Epithelial Cells in a Breathing Lung-On-A-Chip. Frontiers in bioengineering and biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00003.

  39. George, U. Z., & Lubkin, S. R. (2018). Tissue geometry may govern lung branching mode selection. Journal of theoretical biology, 442. https://doi.org/10.1016/j.jtbi.2017.12.031.

  40. Gharenaz, N. M., Movahedin, M., & Mazaheri, Z. (2021). Comparison of two methods for prolong storage of decellularized mouse whole testis for tissue engineering application: An experimental study. International journal of reproductive biomedicine, 19(4). https://doi.org/10.18502/ijrm.v19i4.9058.

  41. Girard, E. D., Jensen, T. J., Vadasz, S. D., Blanchette, A. E., Zhang, F., Moncada, C., et al. (2013). Automated procedure for biomimetic de-cellularized lung scaffold supporting alveolar epithelial transdifferentiation. Biomaterials, 34(38). https://doi.org/10.1016/j.biomaterials.2013.09.055.

  42. Grigoryan, B., Paulsen, S. J., Corbett, D. C., Sazer, D. W., Fortin, C. L., Zaita, A. J., et al. (2019). Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 364(6439), 458–464. https://doi.org/10.1126/science.aav9750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guenthart, B. A., O’Neill, J. D., Kim, J., Fung, K., Vunjak-Novakovic, G., & Bacchetta, M. (2019). Cell replacement in human lung bioengineering. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation, 38(2). https://doi.org/10.1016/j.healun.2018.11.007.

  44. Guvendiren, M., & Burdick, J. A. (2012). Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics (Article). Nature Communications, 3, 792. https://doi.org/10.1038/ncomms1792. https://www.nature.com/articles/ncomms1792#supplementary-information.

  45. Hamlington, K. L., Smith, B. J., Allen, G. B., & Bates, J. H. T. (2016). Predicting ventilator-induced lung injury using a lung injury cost function. Journal of Applied Physiology, 121(1), 106–114. https://doi.org/10.1152/japplphysiol.00096.2016 (Accessed 2023/03/20).

  46. Hao, Y., Zhang, L., He, J., Guo, Z., Ying, L., Xu, Z., et al. (2013). Functional investigation of NCI-H460-inducible myofibroblasts on the chemoresistance to VP-16 with a microfluidic 3D co-culture device. PloS one, 8(4). https://doi.org/10.1371/journal.pone.0061754.

  47. Hashimoto, Y., Tsuchiya, T., Doi, R., Matsumoto, K., Higami, Y., Kobayashi, E., et al. (2019). Alteration of the extracellular matrix and alpha-gal antigens in the rat lung scaffold reseeded using human vascular and adipogenic stromal cells. Journal of tissue engineering and regenerative medicine, 13(11). https://doi.org/10.1002/term.2923.

  48. Hassell, B. A., Goyal, G., Lee, E., Sontheimer-Phelps, A., Levy, O., Chen, C. S., et al. (2017). Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro. Cell reports, 21(2). https://doi.org/10.1016/j.celrep.2017.09.043.

  49. Hewawasam, R. S., Blomberg, R., Šerbedžija, P., & Magin, C. M. (2023). Chemical modification of human decellularized extracellular matrix for incorporation into phototunable hybrid-hydrogel models of tissue fibrosis. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.2c18330.

  50. Hill, C., Jones, M. G., Davies, D. E., & Wang, Y. (2019). Epithelial-mesenchymal transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblastic cross-talk. Journal of lung health and diseases, 3(2), 31–35.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H.-J., Ramadan, M. H., Hudson, A. R., & Feinberg, A. W. (2015). Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Biomedical Engineering, 1(9), e1500758. https://doi.org/10.1126/sciadv.1500758.

  52. Hinton, T. J., Hudson, A., Pusch, K., Lee, A., & Feinberg, A. W. (2016). 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomaterials Science & Engineering, 2, 1781–1786. https://doi.org/10.1021/acsbiomaterials.6b00170.

  53. Horváth, L., Umehara, Y., Jud, C., Blank, F., Petri-Fink, A., & Rothen-Rutishauser, B. (2015). Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep, 5, 7974. https://doi.org/10.1038/srep07974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Htwe, S. S., Harrington, H., Knox, A., Rose, F., Aylott, J., Haycock, J. W., et al. (2015). Investigating NF-κB signaling in lung fibroblasts in 2D and 3D culture systems. Respiratory research, 16. https://doi.org/10.1186/s12931-015-0302-7.

  55. Hu, X. (2021). Protein-based composite materials | Elsevier Enhanced Reader. https://doi.org/10.1016/S1369-7021(12)70091-3.

    Book  Google Scholar 

  56. Huang, X., Li, L., Ammar, R., Zhang, Y., Wang, Y., Ravi, K., et al. (2019). Molecular characterization of a precision-cut rat lung slice model for the evaluation of antifibrotic drugs. American journal of physiology. Lung cellular and molecular physiology, 316(2). https://doi.org/10.1152/ajplung.00339.2018.

  57. Hubbell, J. (1995). Biomaterials in tissue engineering. Bio/technology (Nature Publishing Company), 13(6). https://doi.org/10.1038/nbt0695-565.

  58. Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., & Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. Science (New York, N.Y.), 328(5986). https://doi.org/10.1126/science.1188302.

  59. Humayun, M., Chow, C.-W., & Young, E. W. K. (2018). Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab on a chip, 18(9). https://doi.org/10.1039/c7lc01357d.

  60. Isakson, B. E., Lubman, R. L., Seedorf, G. J., & Boitano, S. (2001). Modulation of pulmonary alveolar type II cell phenotype and communication by extracellular matrix and KGF (research-article). https://doi.org/10.1152/ajpcell.2001.281.4.C1291.

  61. Jacob, A., Morley, M., Hawkins, F., McCauley, K. B., Jean, J. C., Heins, H., et al. (2017). Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell stem cell, 21(4). https://doi.org/10.1016/j.stem.2017.08.014.

  62. Janssen, R., Piscaer, I., Franssen, F. M. E., & Wouters, E. F. M. (2019). Emphysema: looking beyond alpha-1 antitrypsin deficiency. Expert review of respiratory medicine, 13(4). https://doi.org/10.1080/17476348.2019.1580575.

  63. Joshi, R., Batie, M. R., Fan, Q., & Varisco, B. M. (2022). Mouse lung organoid responses to reduced, increased, and cyclic stretch (research-article). https://doi.org/10.1152/ajplung.00310.2020.

  64. Jung, M., Han, Y., Woo, C., & Ki, C. S. (2021). Pulmonary tissue-mimetic hydrogel niches for small cell lung cancer cell culture. Journal of materials chemistry. B, 9(7). https://doi.org/10.1039/d0tb02609c.

  65. Kandow, C. E., Georges, P. C., Janmey, P. A., & Beningo, K. A. (2007). Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods in cell biology, 83. https://doi.org/10.1016/S0091-679X(07)83002-0.

  66. Khan, M. M., Poeckel, D., Halavatyi, A., Zukowska-Kasprzyk, J., Stein, F., Vappiani, J., et al. (2020). An integrated multiomic and quantitative label-free microscopy-based approach to study pro-fibrotic signalling in ex vivo human precision-cut lung slices. The European respiratory journal. https://doi.org/10.1183/13993003.00221-2020.

  67. Kirschner, C. M., & Anseth, K. S. (2013). Hydrogels in Healthcare: From Static to Dynamic Material Microenvironments. Acta materialia, 61(3). https://doi.org/10.1016/j.actamat.2012.10.037.

  68. Kitano, K., Ohata, K., Economopoulos, K. P., Gorman, D. E., Gilpin, S. E., Becerra, D. C., et al. (2021). Orthotopic Transplantation of Human Bioartificial Lung Grafts in a Porcine Model: A Feasibility Study. Seminars in thoracic and cardiovascular surgery. https://doi.org/10.1053/j.semtcvs.2021.03.006.

  69. Kloxin, A. M., Benton, J. A., & Anseth, K. S. (2010). In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials, 31(1). https://doi.org/10.1016/j.biomaterials.2009.09.025.

  70. Kloxin, A. M., Lewis, K. J. R., DeForest, C. A., Seedorf, G., Tibbitt, M. W., Balasubramaniam, V., et al. (2012). Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integrative biology: quantitative biosciences from nano to macro, 4(12). https://doi.org/10.1039/c2ib20212c.

  71. Knudsen, L., & Ochs, M. (2018). The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochemistry and cell biology, 150(6). https://doi.org/10.1007/s00418-018-1747-9.

  72. Kosmala, A., Fitzgerald, M., Moore, E., & Stam, F. (2016). Evaluation of a Gelatin-Modified Poly(ε-Caprolactone) Film as a Scaffold for Lung Disease (research-article). https://doi.org/10.1080/00032719.2016.1163363.

  73. Kruk, D. M. L. W., Wisman, M., Bruin, H. G.D., Lodewijk, M. E., Hof, D. J., Borghuis, T., et al. (2021). Abnormalities in reparative function of lung-derived mesenchymal stromal cells in emphysema. American journal of physiology. Lung cellular and molecular physiology, 320(5). https://doi.org/10.1152/ajplung.00147.2020.

  74. Lee, A., Hudson, A. R., Shiwarski, D. J., Tashman, J. W., Hinton, T. J., Yerneni, S., et al. (2019). 3D bioprinting of collagen to rebuild components of the human heart. Science (New York, N.Y.), 365(6452). https://doi.org/10.1126/science.aav9051.

  75. Lee, J.-H., Bhang, D. H., Beede, A., Huang, T. L., Stripp, B. R., Bloch, K. D., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 156(3). https://doi.org/10.1016/j.cell.2013.12.039.

  76. Lehmann, M., Buhl, L., Alsafadi, H. N., Klee, S., Hermann, S., Mutze, K., et al. (2018). Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respiratory research, 19(1). https://doi.org/10.1186/s12931-018-0876-y.

  77. Lewis, K. J. R., Hall, J. K., Kiyotake, E. A., Christensen, T., Balasubramaniam, V., & Anseth, K. S. (2018). Epithelial-mesenchymal crosstalk influences cellular behavior in a 3D alveolus-fibroblast model system. Biomaterials, 155. https://doi.org/10.1016/j.biomaterials.2017.11.008.

  78. Lewis, K. J. R., Tibbitt, M. W., Zhao, Y., Branchfield, K., Sun, X., Balasubramaniam, V., et al. (2015). In vitro model alveoli from photodegradable microsphere templates. Biomaterials science, 3(6). https://doi.org/10.1039/c5bm00034c.

  79. Li, J., Chen, M., Fan, X., & Zhou, H. (2016). Recent advances in bioprinting techniques: approaches, applications and future prospects. Journal of translational medicine, 14. https://doi.org/10.1186/s12967-016-1028-0.

  80. Li, Y., Wu, Q., Li, L., Chen, F., Bao, J., & Li, W. (2021). Decellularization of porcine whole lung to obtain a clinical-scale bioengineered scaffold. Journal of biomedical materials research. Part A, 109(9). https://doi.org/10.1002/jbm.a.37158.

  81. Link, P. A., Pouliot, R. A., Mikhaiel, N. S., Young, B. M., & Heise, R. L. (2017). Tunable Hydrogels from Pulmonary Extracellular Matrix for 3D Cell Culture. Journal of visualized experiments: JoVE, (119). https://doi.org/10.3791/55094.

  82. Liu, F., Mih, J. D., Shea, B. S., Kho, A. T., Sharif, A. S., Tager, A. M., et al. (2010). Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. The Journal of cell biology, 190(4). https://doi.org/10.1083/jcb.201004082.

  83. Mabry, K. M., Payne, S. Z., & Anseth, K. S. (2016). Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials, 74, 31–41. https://doi.org/10.1016/j.biomaterials.2015.09.035.

    Article  CAS  PubMed  Google Scholar 

  84. Mandrycky, C., Wang, Z., Kim, K., & Kim, D.-H. (2016). 3D bioprinting for engineering complex tissues. Biotechnology advances, 34(4). https://doi.org/10.1016/j.biotechadv.2015.12.011.

  85. Mandrycky, C., Wang, Z., Kim, K., & Kim, D.-H. (2021). 3D Bioprinted Multicellular Vascular Models. Advanced healthcare materials, 10(21). https://doi.org/10.1002/adhm.202101141.

  86. Marinković, A., Liu, F., & Tschumperlin, D. J. (2013). Matrices of physiologic stiffness potently inactivate idiopathic pulmonary fibrosis fibroblasts. American journal of respiratory cell and molecular biology, 48(4). https://doi.org/10.1165/rcmb.2012-0335OC.

  87. Massa, C. B., Allen, G. B., & Bates, J. H. T. (2008). Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. Journal of Applied Physiology, 105, 1813–1821. https://doi.org/10.1152/japplphysiol.90806.2008.

  88. Matera, D. L., DiLillo, K. M., Smith, M. R., Davidson, C. D., Parikh, R., Said, M., et al. (2020). Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Science Advances, 6(37), eabb5069. https://doi.org/10.1126/sciadv.abb5069.

  89. McCrary, M. W., Bousalis, D., Mobini, S., Song, Y. H., & Schmidt, C. E. (2020). Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta biomaterialia, 111. https://doi.org/10.1016/j.actbio.2020.05.031.

  90. Mejías, J. C., Nelson, M. R., Liseth, O., & Roy, K. (2020). A 96-well format microvascularized human lung-on-a-chip platform for microphysiological modeling of fibrotic diseases. Lab on a chip, 20(19). https://doi.org/10.1039/d0lc00644k.

  91. Memic, A., Navaei, A., Mirani, B., Cordova, J. A. V., Aldhahri, M., Dolatshahi-Pirouz, A., et al. (2017). Bioprinting technologies for disease modeling. Biotechnology letters, 39(9). https://doi.org/10.1007/s10529-017-2360-z.

  92. Mishra, D. K., Sakamoto, J. H., Thrall, M. J., Baird, B. N., Blackmon, S. H., Ferrari, M., et al. (2012). Human lung cancer cells grown in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture. PloS one, 7(9). https://doi.org/10.1371/journal.pone.0045308.

  93. Mondoñedo, J. R., Bartolák-Suki, E., Jawde, S. B., Nelson, K., Cao, K., Sonnenberg, A., et al. (2020). A High-Throughput System for Cyclic Stretching of Precision-Cut Lung Slices During Acute Cigarette Smoke Extract Exposure. Frontiers in physiology, 11. https://doi.org/10.3389/fphys.2020.00566.

  94. Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology, 32(8). https://doi.org/10.1038/nbt.2958.

  95. Murray, J. F. (2010). The structure and function of the lung. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease, 14(4).

    Google Scholar 

  96. Naba, A., Clauser, K. R., Hoersch, S., Liu, H., Carr, S. A., & Hynes, R. O. (2012). The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular & cellular proteomics: MCP, 11(4). https://doi.org/10.1074/mcp.M111.014647.

  97. Nair, L. S. (2021). https://doi.org/10.1016/j.progpolymsci.2007.05.017 | Elsevier Enhanced Reader.

  98. Nakamura, H., Sugano, M., Miyashita, T., Hashimoto, H., Ochiai, A., Suzuki, K., et al. (2019). Organoid culture containing cancer cells and stromal cells reveals that podoplanin-positive cancer-associated fibroblasts enhance proliferation of lung cancer cells. Lung cancer (Amsterdam, Netherlands), 134. https://doi.org/10.1016/j.lungcan.2019.04.007.

  99. Narciso, M., Otero, J., Navajas, D., Farré, R., Almendros, I., & Gavara, N. (2021). Image-Based Method to Quantify Decellularization of Tissue Sections. International journal of molecular sciences, 22(16). https://doi.org/10.3390/ijms22168399.

  100. Neelakantan, S., Xin, Y., Gaver, D. P., Cereda, M., Rizi, R., Smith, B. J., & Avazmohammadi, R. (2022). Computational lung modelling in respiratory medicine. Journal of The Royal Society Interface, 19, 20220062. https://doi.org/10.1098/rsif.2022.0062.

  101. Nelson, C. M., Jean, R. P., Tan, J. L., Liu, W. F., Sniadecki, N. J., Spector, A. A., et al. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America, 102(33). https://doi.org/10.1073/pnas.0502575102.

  102. Ng-Blichfeldt, J.-P., Jong, T. de, Kortekaas, R. K., Wu, X., Lindner, M., Guryev, V., et al. (2019). TGF-β activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation. American journal of physiology. Lung cellular and molecular physiology, 317(1). https://doi.org/10.1152/ajplung.00400.2018.

  103. Novak, R., Ingram, M., Marquez, S., Das, D., Delahanty, A., Herland, A., et al. (2020). Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nature biomedical engineering, 4(4). https://doi.org/10.1038/s41551-019-0497-x.

  104. O’Neill, J. D., Anfang, R., Anandappa, A., Costa, J., Javidfar, J., Wobma, H. M., et al. (2013). Decellularization of human and porcine lung tissues for pulmonary tissue engineering. The Annals of thoracic surgery, 96(3). https://doi.org/10.1016/j.athoracsur.2013.04.022.

  105. Obata, T., Tsuchiya, T., Akita, S., Kawahara, T., Matsumoto, K., Miyazaki, T., et al. (2019). Utilization of Natural Detergent Potassium Laurate for Decellularization in Lung Bioengineering. Tissue engineering. Part C, Methods, 25(8). https://doi.org/10.1089/ten.TEC.2019.0016.

  106. Ochs, M., & Mühlfeld, C. (2013). Quantitative microscopy of the lung: a problem-based approach. Part 1: basic principles of lung stereology (review-article). https://doi.org/10.1152/ajplung.00429.2012.

  107. Ochs, M., Nyengaard, J. R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., et al. (2004). The number of alveoli in the human lung. American journal of respiratory and critical care medicine, 169(1). https://doi.org/10.1164/rccm.200308-1107OC.

  108. Oldenkamp, H. F., Ramirez, J. E. V., & Peppas, N. A. (2019). Re-evaluating the importance of carbohydrates as regenerative biomaterials. Regenerative biomaterials, 6(1). https://doi.org/10.1093/rb/rby023.

  109. Paddenberg, R., Mermer, P., Goldenberg, A., & Kummer, W. (2014). Videomorphometric analysis of hypoxic pulmonary vasoconstriction of intra-pulmonary arteries using murine precision cut lung slices. Journal of visualized experiments: JoVE, (83). https://doi.org/10.3791/50970.

  110. Parker, M. W., Rossi, D., Peterson, M., Smith, K., Sikström, K., White, E. S., et al. (2014). Fibrotic extracellular matrix activates a profibrotic positive feedback loop. https://doi.org/10.1172/JCI71386.

  111. Paré, P. D., & Mitzner, W. (2012). Airway-parenchymal interdependence. Comprehensive Physiology, 2(3). https://doi.org/10.1002/cphy.c110039.

  112. Petrou, C. L., D’Ovidio, T. J., Bölükbas, D. A., Tas, S., Brown, R. D., Allawzi, A., et al. (2020). Clickable decellularized extracellular matrix as a new tool for building hybrid-hydrogels to model chronic fibrotic diseases in vitro. Journal of materials chemistry. B, 8(31). https://doi.org/10.1039/d0tb00613k.

  113. Placke, M. E., & Fisher, G. L. (1987). Adult peripheral lung organ culture--a model for respiratory tract toxicology. Toxicology and applied pharmacology, 90(2). https://doi.org/10.1016/0041-008x(87)90336-x.

  114. Platz, J., Bonenfant, N. R., Uhl, F. E., Coffey, A. L., McKnight, T., Parsons, C., et al. (2016). Comparative Decellularization and Recellularization of Wild-Type and Alpha 1,3 Galactosyltransferase Knockout Pig Lungs: A Model for Ex Vivo Xenogeneic Lung Bioengineering and Transplantation. Tissue engineering. Part C, Methods, 22(8). https://doi.org/10.1089/ten.TEC.2016.0109.

  115. Pouliot, R. A., Link, P. A., Mikhaiel, N. S., Schneck, M. B., Valentine, M. S., Gninzeko, F. J. K., et al. (2016). Development and characterization of a naturally derived lung extracellular matrix hydrogel. Journal of biomedical materials research. Part A, 104(8). https://doi.org/10.1002/jbm.a.35726.

  116. Pouliot, R. A., Young, B. M., Link, P. A., Park, H. E., Kahn, A. R., Shankar, K., et al. (2020). Porcine Lung-Derived Extracellular Matrix Hydrogel Properties Are Dependent on Pepsin Digestion Time. Tissue engineering. Part C, Methods, 26(6). https://doi.org/10.1089/ten.TEC.2020.0042.

  117. Price, A. P., England, K. A., Matson, A. M., Blazar, B. R., & Panoskaltsis-Mortari, A. (2010). Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue engineering. Part A, 16(8). https://doi.org/10.1089/ten.TEA.2009.0659.

  118. Pugin, J. (2003). Molecular mechanisms of lung cell activation induced by cyclic stretch. Critical care medicine, 31(4 Suppl). https://doi.org/10.1097/01.CCM.0000057844.31307.ED.

  119. Raeber, G. P., Lutolf, M. P., & Hubbell, J. A. (2005). Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophysical journal, 89(2). https://doi.org/10.1529/biophysj.104.050682.

  120. Rahman, L., Williams, A., Gelda, K., Nikota, J., Wu, D., Vogel, U., et al. (2020). 21st Century Tools for Nanotoxicology: Transcriptomic Biomarker Panel and Precision-Cut Lung Slice Organ Mimic System for the Assessment of Nanomaterial-Induced Lung Fibrosis. Small (Weinheim an der Bergstrasse, Germany), 16(36). https://doi.org/10.1002/smll.202000272.

  121. Reyfman, P. A., Walter, J. M., Joshi, N., Anekalla, K. R., McQuattie-Pimentel, A. C., Chiu, S., et al. (2018). Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 199(12), 1517–1536. https://doi.org/10.1164/rccm.201712-2410OC.

    Article  Google Scholar 

  122. Roan, E., & Waters, C. M. (2011). What do we know about mechanical strain in lung alveoli? (review-article). https://doi.org/10.1152/ajplung.00105.2011.

  123. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta biomaterialia, 49. https://doi.org/10.1016/j.actbio.2016.11.068.

  124. Saleh, K. S., Hewawasam, R., Šerbedžija, P., Blomberg, R., Noreldeen, S. E., Edelman, B., et al. (2022). Engineering Hybrid-Hydrogels Comprised of Healthy or Diseased Decellularized Extracellular Matrix to Study Pulmonary Fibrosis (OriginalPaper). Cellular and Molecular Bioengineering, 1–15. https://doi.org/10.1007/s12195-022-00726-y.

  125. Sava, P., Ramanathan, A., Dobronyi, A., Peng, X., Sun, H., Ledesma-Mendoza, A., et al. (2017). Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI insight, 2(24). https://doi.org/10.1172/jci.insight.96352.

  126. Scarritt, M. E., Bonvillain, R. W., Burkett, B. J., Wang, G., Glotser, E. Y., Zhang, Q., et al. (2014). Hypertensive rat lungs retain hallmarks of vascular disease upon decellularization but support the growth of mesenchymal stem cells. Tissue engineering. Part A, 20(9–10). https://doi.org/10.1089/ten.TEA.2013.0438.

  127. Seiji, Y., Ito, T., Nakamura, Y., Nakaishi-Fukuchi, Y., Matsuo, A., Sato, N., et al. (2019). Alveolus-like organoid from isolated tip epithelium of embryonic mouse lung. Human cell, 32(2). https://doi.org/10.1007/s13577-019-00236-6.

  128. Shelke, N. B. (2021). Polysaccharide biomaterials for drug delivery and regenerative engineering – Shelke – 2014 – Polymers for Advanced Technologies – Wiley Online Library. https://doi.org/10.1002/pat.3266.

  129. Shiraishi, K., Nakajima, T., Shichino, S., Deshimaru, S., Matsushima, K., & Ueha, S. (2019). In vitro expansion of endogenous human alveolar epithelial type II cells in fibroblast-free spheroid culture. Biochemical and biophysical research communications, 515(4). https://doi.org/10.1016/j.bbrc.2019.05.187.

  130. Shirani, A., Ganji, F., Golmohammadi, M., Hashemi, S. M., Mozafari, M., Amoabediny, G., et al. (2021). Cross-linked acellular lung for application in tissue engineering: Effects on biocompatibility, mechanical properties and immunological responses. Materials science & engineering. C, Materials for biological applications, 122. https://doi.org/10.1016/j.msec.2021.111938.

  131. Shiwarski, D. J., Hudson, A. R., Tashman, J. W., & Feinberg, A. W. (2021). Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioengineering, 5(1), 010904. https://doi.org/10.1063/5.0032777 (Accessed 2023/03/20).

  132. Skardal, A., Murphy, S. V., Devarasetty, M., Mead, I., Kang, H.-W., Seol, Y.-J., et al. (2017). Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific reports, 7(1). https://doi.org/10.1038/s41598-017-08879-x.

  133. Smith, B. J., Bartolak-Suki, E., Suki, B., Roy, G. S., Hamlington, K. L., Charlebois, C. M., et al. (2017). Linking Ventilator Injury-Induced Leak across the Blood-Gas Barrier to Derangements in Murine Lung Function (Text). https://doi.org/10.3389/fphys.2017.00466.

  134. Smith, B. J., Grant, K. A., & Bates, J. H. T. (2013). Linking the Development of Ventilator-Induced Injury to Mechanical Function in the Lung (Text). https://doi.org/10.1007/s10439-012-0693-2.

  135. Soleas, J. P., D’Arcangelo, E., Huang, L., Karoubi, G., Nostro, M. C., McGuigan, A. P., et al. (2020). Assembly of lung progenitors into developmentally-inspired geometry drives differentiation via cellular tension. Biomaterials, 254. https://doi.org/10.1016/j.biomaterials.2020.120128.

  136. Stucki, A. O., Stucki, J. D., Hall, S. R. R., Felder, M., Mermoud, Y., Schmid, R. A., et al. (2015). A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab on a chip, 15(5). https://doi.org/10.1039/c4lc01252f.

  137. Sucre, J. M. S., Wilkinson, D., Vijayaraj, P., Paul, M., Dunn, B., Alva-Ornelas, J. A., et al. (2016). A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. American journal of physiology. Lung cellular and molecular physiology, 310(10). https://doi.org/10.1152/ajplung.00446.2015.

  138. Suki, B. (2014). Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung. Journal of cellular physiology, 229(9). https://doi.org/10.1002/jcp.24600.

  139. Suki, B., Ito, S., Stamenovic, D., Lutchen, K. R., & Ingenito, E. P. (2005). Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. Journal of applied physiology (Bethesda, Md.: 1985), 98(5). https://doi.org/10.1152/japplphysiol.01087.2004.

  140. Suki, B., Stamenović, D., & Hubmayr, R. (2011). Lung parenchymal mechanics. Comprehensive Physiology, 1(3). https://doi.org/10.1002/cphy.c100033.

  141. Sundarakrishnan, A., Zukas, H., Coburn, J., Bertini, B. T., Liu, Z., Georgakoudi, I., et al. (2019). Bioengineered in Vitro Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS biomaterials science & engineering, 5(5). https://doi.org/10.1021/acsbiomaterials.8b01262.

  142. Tan, Q., Choi, K. M., Sicard, D., & Tschumperlin, D. J. (2017). Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials, 113. https://doi.org/10.1016/j.biomaterials.2016.10.046.

  143. Tan, Q., Ma, X. Y., Liu, W., Meridew, J. A., Jones, D. L., Haak, A. J., et al. (2019). Nascent Lung Organoids Reveal Epithelium- and Bone Morphogenetic Protein-mediated Suppression of Fibroblast Activation. American journal of respiratory cell and molecular biology, 61(5). https://doi.org/10.1165/rcmb.2018-0390OC.

  144. Travaglini, K. J., Nabhan, A. N., Penland, L., Sinha, R., Gillich, A., Sit, R. V., et al. (2020). A molecular cell atlas of the human lung from single-cell RNA sequencing (OriginalPaper). Nature, 587(7835), 619–625. https://doi.org/10.1038/s41586-020-2922-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tuan, R. S., Boland, G., & Tuli, R. (2003). Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis research & therapy, 5(1). https://doi.org/10.1186/ar614.

  146. Uhl, F. E., Wagner, D. E., & Weiss, D. J. (2017). Preparation of Decellularized Lung Matrices for Cell Culture and Protein Analysis. Methods in molecular biology (Clifton, N.J.), 1627. https://doi.org/10.1007/978-1-4939-7113-8_18.

  147. Uriarte, J. J., Uhl, F. E., Enes, S. E. R., Pouliot, R. A., & Weiss, D. J. (2018). Lung bioengineering: advances and challenges in lung decellularization and recellularization. Current opinion in organ transplantation, 23(6). https://doi.org/10.1097/MOT.0000000000000584.

  148. Vadasz, S., Jensen, T., Moncada, C., Girard, E., Zhang, F., Blanchette, A., et al. (2014). Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. Journal of pediatric surgery, 49(11). https://doi.org/10.1016/j.jpedsurg.2014.04.006.

  149. Vazquez-Armendariz, A. I., Heiner, M., Agha, E. E., Salwig, I., Hoek, A., Hessler, M. C., et al. (2020). Multilineage murine stem cells generate complex organoids to model distal lung development and disease. The EMBO journal, 39(21). https://doi.org/10.15252/embj.2019103476.

  150. Wanczyk, H., Jensen, T., Weiss, D. J., & Finck, C. (2021). Advanced single-cell technologies to guide the development of bioengineered lungs. American journal of physiology. Lung cellular and molecular physiology, 320(6). https://doi.org/10.1152/ajplung.00089.2021.

  151. Wang, H., Haeger, S. M., Kloxin, A. M., Leinwand, L. A., & Anseth, K. S. (2012). Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PloS one, 7(7). https://doi.org/10.1371/journal.pone.0039969.

  152. Weibel, E. R. (2017). Lung morphometry: the link between structure and function. Cell and tissue research, 367(3). https://doi.org/10.1007/s00441-016-2541-4.

  153. Weymann, A., Patil, N. P., Sabashnikov, A., Korkmaz, S., Li, S., Soos, P., et al. (2015). Perfusion-Decellularization of Porcine Lung and Trachea for Respiratory Bioengineering. Artificial organs, 39(12). https://doi.org/10.1111/aor.12481.

  154. Wilkinson, D. C., Mellody, M., Meneses, L. K., Hope, A. C., Dunn, B., & Gomperts, B. N. (2018). Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling. Current protocols in stem cell biology, 46(1). https://doi.org/10.1002/cpsc.56.

  155. Williams, D. (1999) ‘The Williams Dictionary of Biomaterials’. Liverpool: Liverpool University Press.

    Book  Google Scholar 

  156. Wolters, P. J., Collard, H. R., & Jones, K. D. (2014). Pathogenesis of idiopathic pulmonary fibrosis. Annual review of pathology, 9. https://doi.org/10.1146/annurev-pathol-012513-104706.

  157. Wu, X., Dijk, E. M. van, Ng-Blichfeldt, J.-P., Bos, I. S. T., Ciminieri, C., Königshoff, M., et al. (2019). Mesenchymal WNT-5A/5B Signaling Represses Lung Alveolar Epithelial Progenitors. Cells, 8(10). https://doi.org/10.3390/cells8101147.

  158. Yang, X., Li, K., Zhang, X., Liu, C., Guo, B., Wen, W., et al. (2018). Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab on a chip, 18(3). https://doi.org/10.1039/c7lc01224a.

  159. Zamprogno, P., Wüthrich, S., Achenbach, S., Thoma, G., Stucki, J. D., Hobi, N., et al. (2021). Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane (Text). https://doi.org/10.1038/s42003-021-01695-0.

  160. Zscheppang, K., Berg, J., Hedtrich, S., Verheyen, L., Wagner, D. E., Suttorp, N., et al. (2018). Human Pulmonary 3D Models For Translational Research. Biotechnology journal, 13(1). https://doi.org/10.1002/biot.201700341.

  161. Zvarova, B., Uhl, F. E., Uriarte, J. J., Borg, Z. D., Coffey, A. L., Bonenfant, N. R., et al. (2016). Residual Detergent Detection Method for Nondestructive Cytocompatibility Evaluation of Decellularized Whole Lung Scaffolds. Tissue engineering. Part C, Methods, 22(5). https://doi.org/10.1089/ten.TEC.2015.0439.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea M. Magin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blomberg, R., Hewawasam, R.S., Šerbedžija, P., Saleh, K., Caracena, T., Magin, C.M. (2023). Engineering Dynamic 3D Models of Lung. In: Magin, C.M. (eds) Engineering Translational Models of Lung Homeostasis and Disease. Advances in Experimental Medicine and Biology, vol 1413. Springer, Cham. https://doi.org/10.1007/978-3-031-26625-6_9

Download citation

Publish with us

Policies and ethics