Skip to main content

Microbial Fuel Cell Technology: Scale-up and Potential for Industrial Applications

  • Chapter
  • First Online:
A Sustainable Green Future

Abstract

Microbial fuel cells (MFCs), which are widely used in the field of alternative energy, become a key feature that offers a sustainable and environmentally friendly approach. Basically, MFCs are used to convert various substrates such as organic compounds, municipal, industrial, or synthetic wastewater, acetate, and sediment to electricity. This ability makes the MFCs a valuable solution for waste valorization as well. Today, the critical bottleneck in front of MFCs use in the industry is related to the scale-up challenges, considering construction and efficient energy harvesting. From this perspective, the present review covers the scale-up challenges and strategies used to overcome these challenges without underestimating the importance of industrial application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Shanthi Sravan, A. Tharak, J. Annie Modestra, I. Seop Chang, M.S. Venkata, Emerging trends in microbial fuel cell diversification-Critical analysis. Bioresour. Technol. 326, 1–11 (2021). https://doi.org/10.1016/j.biortech.2021.124676

    Article  CAS  Google Scholar 

  2. U. Schröder, Fuel cells – Exploratory fuel cells | Microbial fuel cells, in Encycl Electrochem Power Sources, (2009), pp. 224–237. https://doi.org/10.1016/B978-044452745-5.00288-4

    Chapter  Google Scholar 

  3. A.T. Hoang, S. Nižetić, K.H. Ng, A.M. Papadopoulos, A.T. Le, S. Kumar, et al., Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere 287, 1–25 (2022). https://doi.org/10.1016/j.chemosphere.2021.132285

    Article  CAS  Google Scholar 

  4. J.V. Boas, V.B. Oliveira, M. Simões, A.M.F.R. Pinto, Review on microbial fuel cells applications, developments and costs. J. Environ. Manag. 307, 1–19 (2022). https://doi.org/10.1016/j.jenvman.2022.114525

    Article  CAS  Google Scholar 

  5. T. Tommasi, G. Lombardelli, Energy sustainability of Microbial Fuel Cell (MFC): A case study. J. Power Sources 356, 438–447 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.122

    Article  CAS  Google Scholar 

  6. A. Nawaz, I. ul Haq, K. Qaisar, B. Gunes, S.I. Raja, K. Mohyuddin, et al., Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation. Process. Saf. Environ. Prot. 161, 357–373 (2022). https://doi.org/10.1016/j.psep.2022.03.039

    Article  CAS  Google Scholar 

  7. J.R. Trapero, L. Horcajada, J.J. Linares, J. Lobato, Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy 185, 698–707 (2017). https://doi.org/10.1016/j.apenergy.2016.10.109

    Article  CAS  Google Scholar 

  8. P. Sivasankar, S. Poongodi, P. Seedevi, M. Sivakumar, T. Murugan, S. Loganathan, Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. J. Environ. Manag. 237, 84–93 (2019). https://doi.org/10.1016/j.jenvman.2019.01.075

    Article  CAS  Google Scholar 

  9. N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review. Renew. Sust. Energ. Rev. 15, 1513–1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  10. S.G.A. Flimban, I.M. Ismail, T. Kim, S.-E. Oh, Review overview of recent advancements in the microbial fuel cell from fundamentals to applications: Energies. 12, 1–20 (2019). https://doi.org/10.1016/j.jenvman.2022.114525

  11. M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S.E. Oh, Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J. Faculty of Engineering, Alexandria University 54, 745–756 (2015). https://doi.org/10.1016/j.aej.2015.03.031

    Article  Google Scholar 

  12. R. Goswami, V.K. Mishra, A review of design, operational conditions and applications of microbial fuel cells. Biofuels 9, 203–220 (2018). https://doi.org/10.1080/17597269.2017.1302682

    Article  CAS  Google Scholar 

  13. C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  Google Scholar 

  14. A.A. Yaqoob, M.N.M. Ibrahim, C. Guerrero-Barajas, Modern trend of anodes in microbial fuel cells (MFCs): An overview. Environ. Technol. Innov. 23, 1–20 (2021). https://doi.org/10.1016/j.eti.2021.101579

    Article  CAS  Google Scholar 

  15. M.H. Do, H.H. Ngo, W.S. Guo, Y. Liu, S.W. Chang, D.D. Nguyen, et al., Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Sci. Total Environ. 639, 910–920 (2018). https://doi.org/10.1016/j.scitotenv.2018.05.136

    Article  CAS  Google Scholar 

  16. V. Lanas, Y. Ahn, B.E. Logan, Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. J. Power Sources 247, 228–234 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.110

    Article  CAS  Google Scholar 

  17. E. Kipf, J. Erben, R. Zengerle, J. Gescher, S. Kerzenmacher, Systematic investigation of anode materials for microbial fuel cells with the model organism G. sulfurreducens. Bioresour. Technol. Rep. 2, 29–37 (2018). https://doi.org/10.1016/j.biteb.2018.03.005

    Article  Google Scholar 

  18. B. Logan, S. Cheng, V. Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346 (2007). https://doi.org/10.1021/es062644y

    Article  CAS  Google Scholar 

  19. X. Xie, C. Criddle, Y. Cui, Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ. Sci. 8, 3418–3441 (2015). https://doi.org/10.1039/C5EE01862E

    Article  CAS  Google Scholar 

  20. M. Zhou, M. Chi, J. Luo, H. He, T. Jin, An overview of electrode materials in microbial fuel cells. J. Power Sources [Internet]. Elsevier B.V. 196, 4427–4435 (2011). Available from: https://doi.org/10.1016/j.jpowsour.2011.01.012

    Article  CAS  Google Scholar 

  21. M. Mustakeem, Electrode materials for microbial fuel cells: Nanomaterial approach. Mater. Renew. Sustain. Energy 4, 1–11 (2015). https://doi.org/10.1007/s40243-015-0063-8

    Article  Google Scholar 

  22. E. Antolini, Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens. Bioelectron. 69, 54–70 (2015). https://doi.org/10.1016/j.bios.2015.02.013

    Article  CAS  Google Scholar 

  23. G. Dong, M. Huang, L. Guan, Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys. Chem. Chem. Phys. 14, 2557–2559 (2012). https://doi.org/10.1039/c2cp23718k

    Article  CAS  Google Scholar 

  24. J.M. Morris, S. Jin, J. Wang, C. Zhu, M.A. Urynowicz, Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochem. Commun. 9, 1730–1734 (2007). https://doi.org/10.1016/j.elecom.2007.03.028

    Article  CAS  Google Scholar 

  25. M. Oliot, S. Galier, H. Roux de Balmann, A. Bergel, Ion transport in microbial fuel cells: Key roles, theory and critical review. Appl. Energy 183, 1682–1704 (2016). https://doi.org/10.1016/j.apenergy.2016.09.043

    Article  CAS  Google Scholar 

  26. M. Al-Sahari, A.A. Al-Gheethi, R.M.S. Radin Mohamed, G. Yashni, D.V.N. Vo, N. Ismail, Microbial fuel cell systems; developments, designs, efficiencies, and trends: A comparative study between the conventional and innovative systems. Chemosphere 298, 134244 (2022). https://doi.org/10.1016/j.chemosphere.2022.134244

    Article  CAS  Google Scholar 

  27. H. Liu, R. Ramnarayanan, B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285 (2004). https://doi.org/10.1021/es034923g

    Article  CAS  Google Scholar 

  28. R. Kumar, L. Singh, A.W. Zularisam, Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sust. Energ. Rev. 56, 1322–1336 (2016). https://doi.org/10.1016/j.rser.2015.12.029

    Article  CAS  Google Scholar 

  29. V. Sharma, P.P. Kundu, Biocatalysts in microbial fuel cells. Enzym. Microb. Technol. 47, 179–188 (2010). https://doi.org/10.1016/j.enzmictec.2010.07.001

    Article  CAS  Google Scholar 

  30. Z. Jiang, D. Zhang, L. Zhou, D. Deng, M. Duan, Y. Liu, Enhanced catalytic capability of electroactive biofilm modified with different kinds of carbon nanotubes. Anal. Chim. Acta 1035, 51–59 (2018). https://doi.org/10.1016/j.aca.2018.06.077

    Article  CAS  Google Scholar 

  31. R.H. Mahmoud, F.A. Samhan, G.H. Ali, M.K. Ibrahim, R.Y.A. Hassan, Assisting the biofilm formation of exoelectrogens using nanostructured microbial fuel cells. J. Electroanal. Chem. 824, 128–135 (2018). https://doi.org/10.1016/j.jelechem.2018.07.045

    Article  CAS  Google Scholar 

  32. A. Parkash, Microbial fuel cells: A source of bioenergy. J. Microb. Biochem. Technol. 8, 247–255 (2016). https://doi.org/10.4172/1948-5948.1000293

    Article  CAS  Google Scholar 

  33. D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101, 1533–1543 (2010). https://doi.org/10.1016/j.biortech.2009.10.017

    Article  CAS  Google Scholar 

  34. D.H. Park, J.G. Zeikus, Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348–355 (2003). https://doi.org/10.1002/bit.10501

    Article  CAS  Google Scholar 

  35. W.H. Tan, S. Chong, H.W. Fang, K.L. Pan, M. Mohamad, J.W. Lim, et al., Microbial fuel cell technology—A critical review on scale-up issues. Processes 9, 1–13 (2021). https://doi.org/10.3390/pr9060985

    Article  CAS  Google Scholar 

  36. M. Ravi, V. Paramesh, S.R. Kaviya, E. Anuradha, F.D. Paul Solomon, 3D cell culture systems: Advantages and applications. J. Cell. Physiol. 230, 16–26 (2015). https://doi.org/10.1002/jcp.24683

    Article  CAS  Google Scholar 

  37. M. Farhan, A. Larjo, O. Yli-Harja, T. Aho, Modeling bioprocess scale-up utilizing regularized linear and logistic regression, in IEEE Int Work Mach Learn Signal Process MLSP, (2013), pp. 1–6. https://doi.org/10.1109/MLSP.2013.6661906

    Chapter  Google Scholar 

  38. X. Zhu, L. Zhang, J. Li, Q. Liao, D.D. Ye, Performance of liter-scale microbial fuel cells with electrode arrays: Effect of array pattern. Int. J. Hydrog. Energy 38, 15716–15722 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.052

    Article  CAS  Google Scholar 

  39. S.E. Cotterill, J. Dolfing, C. Jones, T.P. Curtis, E.S. Heidrich, Low temperature domestic wastewater treatment in a microbial electrolysis cell with 1 m2 anodes: Towards system scale-up. Fuel Cells 17, 584–592 (2017). https://doi.org/10.1002/fuce.201700034

    Article  CAS  Google Scholar 

  40. V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, Overview on the developments of microbial fuel cells. Biochem. Eng. J. 73, 53–64 (2013). https://doi.org/10.1016/j.bej.2013.01.012

    Article  CAS  Google Scholar 

  41. H. Hiegemann, D. Herzer, E. Nettmann, M. Lübken, P. Schulte, K.G. Schmelz, et al., An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour. Technol. 218, 115–122 (2016). https://doi.org/10.1016/j.biortech.2016.06.052

    Article  CAS  Google Scholar 

  42. P. Liang, R. Duan, Y. Jiang, X. Zhang, Y. Qiu, X. Huang, One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 141, 1–8 (2018). https://doi.org/10.1016/j.watres.2018.04.066

    Article  CAS  Google Scholar 

  43. X.A. Walter, I. Gajda, S. Forbes, J. Winfield, J. Greenman, I. Ieropoulos, Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnol. Biofuels. BioMed Central 9, 1–11 (2016). https://doi.org/10.1186/s13068-016-0504-3

    Article  CAS  Google Scholar 

  44. F. Fischer, M. Sugnaux, C. Savy, G. Hugenin, Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up. Appl. Energy 230, 1633–1644 (2018). https://doi.org/10.1016/j.apenergy.2018.09.030

    Article  Google Scholar 

  45. H. Mehravanfar, M.A. Mahdavi, R. Gheshlaghi, Economic optimization of stacked microbial fuel cells to maximize power generation and treatment of wastewater with minimal operating costs. Int. J. Hydrog. Energy 44, 20355–20367 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.010

    Article  CAS  Google Scholar 

  46. P. Clauwaert, P. Aelterman, T.H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey, et al., Minimizing losses in bio-electrochemical systems: The road to applications. Appl. Microbiol. Biotechnol. 79, 901–913 (2008). https://doi.org/10.1007/s00253-008-1522-2

    Article  CAS  Google Scholar 

  47. S. Kuchi, O. Sarkar, S.K. Butti, G. Velvizhi, S. Venkata Mohan, Stacking of microbial fuel cells with continuous mode operation for higher bioelectrogenic activity. Bioresour. Technol. 257, 210–216 (2018). https://doi.org/10.1016/j.biortech.2018.02.057

    Article  CAS  Google Scholar 

  48. Y. Fan, S.K. Han, H. Liu, Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci. 5, 8273–8280 (2012). https://doi.org/10.1039/C2EE21964F

    Article  CAS  Google Scholar 

  49. B. Neethu, G.D. Bhowmick, M.M. Ghangrekar, Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator. Biochem. Eng. J. 133, 205–213 (2018). https://doi.org/10.1016/j.bej.2018.02.014

    Article  CAS  Google Scholar 

  50. M. Ghasemi, M. Ismail, S.K. Kamarudin, K. Saeedfar, W.R.W. Daud, S.H.A. Hassan, et al., Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl. Energy 102, 1050–1056 (2013). https://doi.org/10.1016/j.apenergy.2012.06.003

    Article  CAS  Google Scholar 

  51. S. Mateo, A. Cantone, P. Cañizares, F.J. Fernández-Morales, O. Scialdone, M.A. Rodrigo, Development of a module of stacks of air-breathing microbial fuel cells to light-up a strip of LEDs. Electrochim. Acta 274, 152–159 (2018). https://doi.org/10.1016/j.electacta.2018.04.095

    Article  CAS  Google Scholar 

  52. B.Y. Chen, C.M. Ma, K. Han, P.L. Yueh, L.J. Qin, C.C. Hsueh, Influence of textile dye and decolorized metabolites on microbial fuel cell-assisted bioremediation. Bioresour. Technol. 200, 1033–1038 (2016). https://doi.org/10.1016/j.biortech.2015.10.011

    Article  CAS  Google Scholar 

  53. J. Chouler, I. Bentley, F. Vaz, A. O’Fee, P.J. Cameron, M. Di Lorenzo, Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochim. Acta 231, 319–326 (2017). https://doi.org/10.1016/j.electacta.2017.01.195

    Article  CAS  Google Scholar 

  54. P. Tanikkul, N. Pisutpaisal, Membrane-less MFC based biosensor for monitoring wastewater quality. Int. J. Hydrog. Energy 43, 483–489 (2018). https://doi.org/10.1016/j.ijhydene.2017.10.065

    Article  CAS  Google Scholar 

  55. A.B. Ergettie, M. Dagbasi, Impact of wastewater concentration and feed frequency on ammonia inhibition in microbial fuel cells. Biofuels 271, 1–7 (2018). https://doi.org/10.1080/17597269.2018.1519760

    Article  CAS  Google Scholar 

  56. A. Khandelwal, A. Vijay, A. Dixit, M. Chhabra, Microbial fuel cell powered by lipid extracted algae: A promising system for algal lipids and power generation. Bioresour. Technol. 247, 520–527 (2018). https://doi.org/10.1016/j.biortech.2017.09.119

    Article  CAS  Google Scholar 

  57. N. Lin, Q. Yang, Y. Feng, Optimization of catalyst dosage and total volume for extendible stacked microbial fuel cell reactors using spacer. J. Power Sources 517, 1–6 (2022). https://doi.org/10.1016/j.jpowsour.2021.230697

    Article  CAS  Google Scholar 

  58. L. Szydlowski, J. Ehlich, I. Goryanin, G. Pasternak, High-throughput 96-well bioelectrochemical platform for screening of electroactive microbial consortia. Chem. Eng. J. 427, 1–11 (2022). https://doi.org/10.1016/j.cej.2021.131692

    Article  CAS  Google Scholar 

  59. H.O. Mohamed, M. Obaid, K.M. Poo, M. Ali Abdelkareem, S.A. Talas, O.A. Fadali, et al., Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem. Eng. J. 349, 800–807 (2018). https://doi.org/10.1016/j.cej.2018.05.138

    Article  CAS  Google Scholar 

  60. Y. Liu, Y. Zhao, K. Li, Z. Wang, P. Tian, D. Liu, et al., Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells. J. Power Sources 378, 1–9 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.019

    Article  CAS  Google Scholar 

  61. M. Sharma, P.P. Das, T. Sood, A. Chakraborty, M.K. Purkait, Reduced graphene oxide incorporated polyvinylidene fluoride/cellulose acetate proton exchange membrane for energy extraction using microbial fuel cells. J. Electroanal. Chem. 907, 1–9 (2022). https://doi.org/10.1016/j.jelechem.2021.115890

    Article  CAS  Google Scholar 

  62. A. Fathima, Y.Z. Liam, I. Ilankoon, M.N. Chong, Data-driven and validated dimensional analysis for rational scale-up of a dual-chamber microbial fuel cell system for water-energy nexus exploitation. Bioresour. Technol. 354, 1–10 (2022). https://doi.org/10.1016/j.biortech.2022.127233

    Article  CAS  Google Scholar 

  63. F.R. Schmidt, Optimization and scale up of industrial fermentation processes. Appl. Microbiol. Biotechnol. 68, 425–435 (2005). https://doi.org/10.1007/s00253-005-0003-0

    Article  CAS  Google Scholar 

  64. G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, et al., Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18, 327–334 (2003). https://doi.org/10.1007/s00253-005-0003-0

    Article  CAS  Google Scholar 

  65. B.E. Logan, Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85, 1665–1671 (2010). https://doi.org/10.1007/s00253-009-2378-9

    Article  CAS  Google Scholar 

  66. S. You, M. Ma, W. Wang, D. Qi, X. Chen, J. Qu, et al., 3D macroporous nitrogen-enriched graphitic carbon scaffold for efficient bioelectricity generation in microbial fuel cells. Adv. Energy Mater. 7, 1–10 (2017). https://doi.org/10.1002/aenm.201601364

    Article  CAS  Google Scholar 

  67. A. Janicek, Y. Fan, H. Liu, Design of microbial fuel cells for practical application: A review and analysis of scale-up studies. Biofuels 5, 79–92 (2014). https://doi.org/10.1002/aenm.201601364

    Article  CAS  Google Scholar 

  68. K. Ben Liew, W.R.W. Daud, M. Ghasemi, J.X. Leong, S. Su Lim, M. Ismail, Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. Int. J. Hydrog. Energy 39, 4870–4883 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.062

    Article  CAS  Google Scholar 

  69. S.Q. Ci, Y.M. Wu, J.P. Zou, L.H. Tang, S.L. Luo, J.H. Li, et al., Nitrogen-doped graphene nanosheets as high efficient catalysts for oxygen reduction reaction. Chin. Sci. Bull. 57, 3065–3070 (2012). https://doi.org/10.1007/s11434-012-5253-5

    Article  CAS  Google Scholar 

  70. I. Gajda, J. Greenman, C. Melhuish, I. Ieropoulos, Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 82, 87–93 (2015). https://doi.org/10.1016/j.biombioe.2015.05.017

    Article  CAS  Google Scholar 

  71. Y. Cui, N. Rashid, N. Hu, M.S.U. Rehman, J.I. Han, Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers. Manag. 79, 674–680 (2014). https://doi.org/10.1016/j.enconman.2013.12.032

    Article  CAS  Google Scholar 

  72. J. Ma, Z. Wang, J. Zhang, T.D. Waite, Z. Wu, Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). Water Res. 108, 356–364 (2017). https://doi.org/10.1016/j.watres.2016.11.016

    Article  CAS  Google Scholar 

  73. S. Wu, H. Li, X. Zhou, P. Liang, X. Zhang, Y. Jiang, et al., A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 98, 396–403 (2016). https://doi.org/10.1016/j.watres.2016.04.043

    Article  CAS  Google Scholar 

  74. M. Rahimnejad, G. Bakeri, M. Ghasemi, A. Zirepour, A review on the role of proton exchange membrane on the performance of microbial fuel cell. Polym. Adv. Technol. 25, 1426–1432 (2014). https://doi.org/10.1002/pat.3383

    Article  CAS  Google Scholar 

  75. H.B. Khalili, D. Mohebbi-Kalhori, M.S. Afarani, Microbial fuel cell (MFC) using commercially available unglazed ceramic wares: Low-cost ceramic separators suitable for scale-up. Int. J. Hydrog. Energy 42, 8233–8241 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.095

    Article  CAS  Google Scholar 

  76. M. Li, M. Zhou, X. Tian, C. Tan, C.T. McDaniel, D.J. Hassett, et al., Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol. Adv. 36, 1316–1327 (2018). https://doi.org/10.1016/j.biotechadv.2018.04.010

    Article  CAS  Google Scholar 

  77. W.E. Thung, S.A. Ong, L.N. Ho, Y.S. Wong, F.M. Ridwan, Y.L. Oon, et al., Pilot scale single chamber up-flow membrane-less microbial fuel cell for wastewater treatment and electricity generation. AIP Conf. Proc. 1828, 1–5 (2017). https://doi.org/10.1063/1.4979404

    Article  Google Scholar 

  78. O.W. Achaw, G. Afrane, The evolution of the pore structure of coconut shells during the preparation of coconut shell-based activated carbons. Microporous Mesoporous Mater. 112, 284–290 (2008). https://doi.org/10.1016/j.micromeso.2007.10.001

    Article  CAS  Google Scholar 

  79. M. Mashkour, M. Rahimnejad, M. Mashkour, F. Soavi, Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly. Appl. Energy 282, 1–11 (2021). https://doi.org/10.1016/j.apenergy.2020.116150

    Article  CAS  Google Scholar 

  80. H. Wu, Y. Fu, C. Guo, Y. Li, N. Jiang, C. Yin, Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater. Bioresour. Technol. 260, 130–134 (2018). https://doi.org/10.1016/j.biortech.2018.03.133

    Article  CAS  Google Scholar 

  81. M. Herzberg, C.G. Dosoretz, S. Tarre, M. Green, Patchy biofilm coverage can explain the potential advantage of BGAC reactors. Environ. Sci. Technol. 37, 4274–4280 (2003). https://doi.org/10.1021/es0210852

    Article  CAS  Google Scholar 

  82. K.J. Chae, M.J. Choi, J.W. Lee, K.Y. Kim, I.S. Kim, Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 100, 3518–3525 (2009). https://doi.org/10.1016/j.biortech.2009.02.065

    Article  CAS  Google Scholar 

  83. B. Liu, I. Williams, Y. Li, L. Wang, A. Bagtzoglou, J. McCutcheon, et al., Towards high power output of scaled-up benthic microbial fuel cells (BMFCs) using multiple electron collectors. Biosens. Bioelectron. 79, 435–441 (2016). https://doi.org/10.1016/j.bios.2015.12.077

    Article  CAS  Google Scholar 

  84. M.A. Moran, The global ocean microbiome. Science 350, 1–6 (2015). https://doi.org/10.1126/science.aac8455

    Article  CAS  Google Scholar 

  85. N. Chabert, O. Amin Ali, W. Achouak, All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry 106, 88–96 (2015). https://doi.org/10.1016/j.bioelechem.2015.07.004

    Article  CAS  Google Scholar 

  86. G.W. Chen, S.J. Choi, J.H. Cha, T.H. Lee, C.W. Kim, Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells. Korean J. Chem. Eng. 27, 1513–1520 (2010). https://doi.org/10.1007/s11814-010-0231-6

    Article  CAS  Google Scholar 

  87. S. Cheng, B.E. Logan, Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol. 102, 4468–4473 (2011). https://doi.org/10.1016/j.biortech.2010.12.104

    Article  CAS  Google Scholar 

  88. B.M. An, Y. Heo, H.A. Maitlo, J.Y. Park, Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment. Bioresour. Technol. 210, 68–73 (2016). https://doi.org/10.1016/j.biortech.2016.01.108

    Article  CAS  Google Scholar 

  89. S. Yang, F. Du, H. Liu, Characterization of mixed-culture biofilms established in microbial fuel cells. Biomass Bioenergy 46, 531–537 (2012). https://doi.org/10.1016/j.biombioe.2012.07.007

    Article  CAS  Google Scholar 

  90. M. Grattieri, S.D. Minteer, Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives. Bioelectrochemistry 120, 127–137 (2018). https://doi.org/10.1016/j.bioelechem.2017.12.004

    Article  CAS  Google Scholar 

  91. E. Zikmund, K.Y. Kim, B.E. Logan, Hydrogen production rates with closely-spaced felt anodes and cathodes compared to brush anodes in two-chamber microbial electrolysis cells. Int. J. Hydrog. Energy 43, 9599–9606 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.059

    Article  CAS  Google Scholar 

  92. Y. Zhang, B. Min, L. Huang, I. Angelidaki, Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresour. Technol. 102, 1166–1173 (2011). https://doi.org/10.1016/j.biortech.2010.09.044

    Article  CAS  Google Scholar 

  93. T. Narihiro, Y. Sekiguchi, Microbial communities in anaerobic digestion processes for waste and wastewater treatment: A microbiological update. Curr. Opin. Biotechnol. 18, 273–278 (2007). https://doi.org/10.1016/j.copbio.2007.04.003

    Article  CAS  Google Scholar 

  94. M. Hasany, M.M. Mardanpour, S. Yaghmaei, Biocatalysts in microbial electrolysis cells: A review. Int. J. Hydrog. Energy 41, 1477–1493 (2016). https://doi.org/10.1016/j.ijhydene.2015.10.097

    Article  CAS  Google Scholar 

  95. O. Tkach, T. Sangeetha, S. Maria, A. Wang, Performance of low temperature Microbial Fuel Cells (MFCs) catalyzed by mixed bacterial consortia. J. Environ. Sci. (China) 52, 284–292 (2017). https://doi.org/10.1016/j.jes.2016.11.006

    Article  CAS  Google Scholar 

  96. Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74, 78–82 (2008). https://doi.org/10.1016/j.bioelechem.2008.07.007

    Article  CAS  Google Scholar 

  97. S. Puig, M. Serra, M. Coma, M. Cabré, M.D. Balaguer, J. Colprim, Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour. Technol. 101, 9594–9599 (2010). https://doi.org/10.1016/j.biortech.2010.07.082

    Article  CAS  Google Scholar 

  98. B.E. Logan, B. Hamelers, R. Rozendal, U. Shroder, J. Keller, S. Freguia, et al., Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006). http://pubs.acs.org/doi/abs/10.1021/es0605016

    Article  CAS  Google Scholar 

  99. A. Aguilar, T. Twardowski, R. Wohlgemuth, Bioeconomy for sustainable development. Biotechnol. J. 14, 1–11 (2019). https://doi.org/10.1002/biot.201800638

    Article  CAS  Google Scholar 

  100. J. Van Lancker, E. Wauters, G. Van Huylenbroeck, Managing innovation in the bioeconomy: An open innovation perspective. Biomass Bioenergy 90, 60–69 (2016). https://doi.org/10.1016/j.biombioe.2016.03.017

    Article  Google Scholar 

  101. J. Prasad, R.K. Tripathi, Scale up sediment microbial fuel cell for powering Led lighting. Int. J. Renew. Energy Dev. 7, 53–58 (2018). https://doi.org/10.14710/ijred.7.1.53-58

    Article  CAS  Google Scholar 

  102. L. Hsu, B. Chadwick, J. Kagan, R. Thacher, A. Wotawa-Bergen, K. Richter, Scale up considerations for sediment microbial fuel cells. RSC Adv. 3, 15947–15954 (2013). https://doi.org/10.1039/c3ra43180k

    Article  CAS  Google Scholar 

  103. A. Dekker, Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ. Sci. Technol. 43, 9038–9042 (2009). https://doi.org/10.1021/es901939r

    Article  CAS  Google Scholar 

  104. F. Zhang, Z. He, Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination. Desalination 360, 28–34 (2015). https://doi.org/10.1016/j.desal.2015.01.009

    Article  CAS  Google Scholar 

  105. E. Herrero-Hernandez, T.J. Smith, R. Akid, Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell. Biosens. Bioelectron. 39, 194–198 (2013). https://doi.org/10.1016/j.bios.2012.07.037

    Article  CAS  Google Scholar 

  106. P. Clauwaert, S. Mulenga, P. Aelterman, W. Verstraete, Litre-scale microbial fuel cells operated in a complete loop. Appl. Microbiol. Biotechnol. 83, 241–247 (2009). https://doi.org/10.1007/s00253-008-1522-2

    Article  CAS  Google Scholar 

  107. T. Gorrindo, E. Goldfarb, R.J. Birnbaum, L. Chevalier, B. Meller, J. Alpert, et al., Simulation-based ongoing professional practice evaluation in psychiatry: A novel tool for performance assessment. Jt. Comm. J. Qual. Patient Saf. 39, 319–323 (2013). https://doi.org/10.1016/s1553-7250(13)39045-x

    Article  Google Scholar 

  108. F. Zhang, K.S. Jacobson, P. Torres, Z. He, Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell. Energy Environ. Sci. 3, 1347–1352 (2010). https://doi.org/10.1039/c3ra43180k

    Article  CAS  Google Scholar 

  109. P.A. Opoku, H. Jingyu, L. Yi, L. Guang, E. Norgbey, Scaled-up multi-anode shared cathode microbial fuel cell for simultaneous treatment of multiple real wastewaters and power generation. Chemosphere 299, 1–9 (2022). https://doi.org/10.1016/j.chemosphere.2022.134401

    Article  CAS  Google Scholar 

  110. T. Jafary, M. Rahimnejad, A.A. Ghoreyshi, G. Najafpour, F. Hghparast, W.R.W. Daud, Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers. Manag. 75, 256–262 (2013). https://doi.org/10.1016/j.enconman.2013.06.032

    Article  CAS  Google Scholar 

  111. D. Jiang, X. Li, D. Raymond, J. Mooradain, B. Li, Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int. J. Hydrog. Energy 35, 8683–8689 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.136

    Article  CAS  Google Scholar 

  112. X.A. Walter, E. Madrid, I. Gajda, J. Greenman, I. Ieropoulos, Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. J. Power Sources 520, 1–10 (2022). https://doi.org/10.1016/j.jpowsour.2021.230875

    Article  CAS  Google Scholar 

  113. C.-C. Chang, C.-P. Yu, Impact of cathodic biofouling on the uneven performance of individual units and scale-up power efficiency in parallel-connected air-cathode microbial fuel cells. J. Power Sources 532, 1–9 (2022). https://doi.org/10.1016/j.jpowsour.2022.231347

    Article  CAS  Google Scholar 

  114. I. Gajda, J. Greenman, I. Ieropoulos, Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl. Energy 262, 1–7 (2020). https://doi.org/10.1016/j.apenergy.2019.11447

    Article  Google Scholar 

  115. L. Zhuang, Y. Yuan, Y. Wang, S. Zhou, Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresour. Technol. 123, 406–412 (2012). https://doi.org/10.1016/j.biortech.2012.07.038

    Article  CAS  Google Scholar 

  116. J. Dziegielowski, B. Metcalfe, P. Villegas-Guzman, C.A. Martínez-Huitle, A. Gorayeb, J. Wenk, et al., Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil. Appl. Energy. Elsevier Ltd 278, 1–35 (2020). https://doi.org/10.1016/j.apenergy.2020.115680

    Article  CAS  Google Scholar 

  117. M. Isabel San-Martín, R. Mateos, B. Carracedo, A. Escapa, A. Morán, Pilot-scale bioelectrochemical system for simultaneous nitrogen and carbon removal in urban wastewater treatment plants. J. Biosci. Bioeng. 126, 758–763 (2018). https://doi.org/10.1016/j.jbiosc.2018.06.008

    Article  CAS  Google Scholar 

  118. M. Sugioka, N. Yoshida, K. Iida, On site evaluation of a tubular microbial fuel cell using an anion exchange membrane for sewage water treatment. Front. Energy Res. 7, 1–9 (2019). https://doi.org/10.3389/fenrg.2019.00091

    Article  Google Scholar 

  119. M. Sugioka, N. Yoshida, T. Yamane, Y. Kakihana, M. Higa, T. Matsumura, et al., Long-term evaluation of an air-cathode microbial fuel cell with an anion exchange membrane in a 226L wastewater treatment reactor. Environ. Res. 205, 1–9 (2022). https://doi.org/10.1016/j.envres.2021.112416

    Article  CAS  Google Scholar 

  120. Y. Feng, W. He, J. Liu, X. Wang, Y. Qu, N. Ren, A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour. Technol. 156, 132–138 (2014). https://doi.org/10.1016/j.biortech.2013.12.104

    Article  CAS  Google Scholar 

  121. I. Das, M.M. Ghangrekar, R. Satyakam, P. Srivastava, S. Khan, H.N. Pandey, On-site sanitary wastewater treatment system using 720-L stacked microbial fuel cell: Case study. J. Hazard. Toxic Radioact. Waste 24, 1–7 (2020). https://doi.org/10.1061/(asce)hz.2153-5515.0000518

    Article  CAS  Google Scholar 

  122. Z. He, S.D. Minteer, L.T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39, 5262–5267 (2005). https://doi.org/10.1021/es0502876

    Article  CAS  Google Scholar 

  123. F. Hejazi, A.A. Ghoreyshi, M. Rahimnejad, Simultaneous phenol removal and electricity generation using a hybrid granular activated carbon adsorption-biodegradation process in a batch recycled tubular microbial fuel cell. Biomass Bioenergy 129, 1–9 (2019). https://doi.org/10.1016/j.biombioe.2019.105336

    Article  CAS  Google Scholar 

  124. J.R. Kim, G.C. Premier, F.R. Hawkes, R.M. Dinsdale, A.J. Guwy, Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J. Power Sources 187, 393–399 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.020

    Article  CAS  Google Scholar 

  125. C.T. Wang, F.Y. Liao, K.S. Liu, Electrical analysis of compost solid phase microbial fuel cell. Int. J. Hydrog. Energy 38, 11124–11130 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.120

    Article  CAS  Google Scholar 

  126. J.T. Babauta, M. Kerber, L. Hsu, A. Phipps, D.B. Chadwick, Y.M. Arias-Thode, Scaling up benthic microbial fuel cells using flyback converters. J. Power Sources 395, 98–105 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.042

    Article  CAS  Google Scholar 

  127. Y.P. Wang, X.W. Liu, W.W. Li, F. Li, Y.K. Wang, G.P. Sheng, et al., A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment. Appl. Energy 98, 230–235 (2012). https://doi.org/10.1016/j.apenergy.2012.03.029

    Article  CAS  Google Scholar 

  128. C. Jayashree, K. Tamilarasan, M. Rajkumar, P. Arulazhagan, K.N. Yogalakshmi, M. Srikanth, et al., Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. J. Environ. Manag. 180, 351–358 (2016). https://doi.org/10.1016/j.jenvman.2016.05.050

    Article  CAS  Google Scholar 

  129. S. Perazzoli, R.B. Bastos, F.B. Santana, H.M. Soares, Biological fuel cells produce bioelectricity with in-situ brackish water purification. Water Sci. Technol. 78, 301–309 (2018). https://doi.org/10.2166/wst.2018.295

    Article  CAS  Google Scholar 

  130. J. Zhang, H. Yuan, Y. Deng, Y. Zha, I.M. Abu-Reesh, Z. He, et al., Life cycle assessment of a microbial desalination cell for sustainable wastewater treatment and saline water desalination. J. Clean. Prod. 200, 900–910 (2018). https://doi.org/10.1016/j.jclepro.2018.07.197

    Article  CAS  Google Scholar 

  131. X. Li, X. Wang, Y. Zhang, L. Cheng, J. Liu, F. Li, et al., Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells. RSC Adv. 4, 59803–59808 (2014). https://doi.org/10.1039/c4ra10673c

    Article  CAS  Google Scholar 

  132. A.S. Mathuriya, Novel microbial fuel cell design to operate with different wastewaters simultaneously. J. Environ. Sci. (China) 42, 105–111 (2016). https://doi.org/10.1016/j.jes.2015.06.014

    Article  CAS  Google Scholar 

  133. X. Cao, X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, et al., A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 43, 7148–7152 (2009). https://doi.org/10.1021/es901950j

    Article  CAS  Google Scholar 

  134. J.K. Nayak, U.K. Ghosh, Post treatment of microalgae treated pharmaceutical wastewater in photosynthetic microbial fuel cell (PMFC) and biodiesel production. Biomass Bioenergy 131, 1–10 (2019). https://doi.org/10.1016/j.biombioe.2019.105415

    Article  CAS  Google Scholar 

  135. A.J. Slate, K.A. Whitehead, D.A.C. Brownson, C.E. Banks, Microbial fuel cells: An overview of current technology. Renew. Sust. Energ. Rev. 101, 60–81 (2019). https://doi.org/10.1016/j.rser.2018.09.044

    Article  CAS  Google Scholar 

  136. I.A. Ieropoulos, P. Ledezma, A. Stinchcombe, G. Papaharalabos, C. Melhuish, J. Greenman, Waste to real energy: The first MFC powered mobile phone. Phys. Chem. Chem. Phys. 15, 15312–15316 (2013)

    Article  CAS  Google Scholar 

  137. P. Ledezma, A. Stinchcombe, J. Greenman, I. Ieropoulos, The first self-sustainable microbial fuel cell stack. Phys. Chem. Chem. Phys. 15, 2278–2281 (2013). https://doi.org/10.1039/c3cp52889h

    Article  CAS  Google Scholar 

  138. X.A. Walter, I. Merino-Jiménez, J. Greenman, I. Ieropoulos, PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. J. Power Sources 392, 150–158 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.047

    Article  CAS  Google Scholar 

  139. C. Melhuish, I. Ieropoulos, J. Greenman, I. Horsfield, Energetically autonomous robots: Food for thought. Auton. Robots 21, 187–198 (2006). https://doi.org/10.1007/s10514-006-6574-5

    Article  Google Scholar 

  140. A. Escapa, R. Mateos, E.J. Martínez, J. Blanes, Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew. Sust. Energ. Rev. 55, 942–956 (2016). https://doi.org/10.1016/j.rser.2015.11.029

    Article  CAS  Google Scholar 

  141. Y. Zhang, I. Angelidaki, Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnol. Bioeng. 108, 2339–2347 (2011). https://doi.org/10.1002/bit.23204

    Article  CAS  Google Scholar 

  142. H. Yang, M. Zhou, M. Liu, W. Yang, T. Gu, Microbial fuel cells for biosensor applications. Biotechnol. Lett. Springer Netherlands 37, 2357–2364 (2015). https://doi.org/10.1007/s10529-015-1929-7

    Article  CAS  Google Scholar 

  143. G. Jabeen, R. Farooq, Microbial fuel cells and their applications for cost effective water pollution remediation. Proc. Natl. Acad. Sci. India Sect. B – Biol. Sci. 87, 625–635 (2017). https://doi.org/10.1007/s40011-015-0683-x

    Article  CAS  Google Scholar 

  144. F. Li, Y. Li, L. Sun, X. Li, C. Yin, X. An, et al., Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnol. Biofuels. BioMed Central 10, 1–10 (2017). https://doi.org/10.1186/s13068-017-0881-2

    Article  CAS  Google Scholar 

  145. F. Li, L. Wang, C. Liu, D. Wu, H. Song, Engineering exoelectrogens by synthetic biology strategies. Curr. Opin. Electrochem. 10, 37–45 (2018). https://doi.org/10.1016/j.coelec.2018.03.030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suphi S. Oncel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tugcu, B., Celik, Y., Yarkent, C., Gurlek, C., Kose, A., Oncel, S.S. (2023). Microbial Fuel Cell Technology: Scale-up and Potential for Industrial Applications. In: Oncel, S.S. (eds) A Sustainable Green Future. Springer, Cham. https://doi.org/10.1007/978-3-031-24942-6_29

Download citation

Publish with us

Policies and ethics