Skip to main content

Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers (STACOM 2022)

Abstract

2D cardiac MR cine images provide data with a high signal-to-noise ratio for the segmentation and reconstruction of the heart. These images are frequently used in clinical practice and research. However, the segments have low resolution in the through-plane direction, and standard interpolation methods are unable to improve resolution and precision. We proposed an end-to-end pipeline for producing high-resolution segments from 2D MR images. This pipeline utilised a bilateral optical flow warping method to recover images in the through-plane direction, while a SegResNet automatically generated segments of the left and right ventricles. A multi-modal latent-space self-alignment network was implemented to guarantee that the segments maintain an anatomical prior derived from unpaired 3D high-resolution CT scans. On 3D MR angiograms, the trained pipeline produced high-resolution segments that preserve an anatomical prior derived from patients with various cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfakih, K., Reid, S., Jones, T., Sivananthan, M.: Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur. Radiol. 14(10), 1813–1822 (2004)

    Article  Google Scholar 

  2. Barkhof, F., Pouwels, P.J., Wattjes, M.P.: The holy grail in diagnostic neuroradiology: 3T OR 3D? (2011)

    Google Scholar 

  3. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Biffi, C., et al.: 3D high-resolution cardiac segmentation reconstruction from 2D views using conditional variational autoencoders. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1643–1646. IEEE (2019)

    Google Scholar 

  5. Delannoy, Q., et al.: SegSRGAN: super-resolution and segmentation using generative adversarial networks-application to neonatal brain MRI. Comput. Biol. Med. 120, 103755 (2020)

    Google Scholar 

  6. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  7. Greenspan, H., Oz, G., Kiryati, N., Peled, S.: MRI inter-slice reconstruction using super-resolution. Magn. Reson. Imaging 20(5), 437–446 (2002)

    Article  MATH  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam, a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR), vol. 1412 (2015)

    Google Scholar 

  9. Mauger, C.A., et al.: Right-left ventricular shape variations in tetralogy of Fallot: associations with pulmonary regurgitation. J. Cardiovasc. Magn. Reson. 23(1), 1–14 (2021)

    Article  Google Scholar 

  10. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  11. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Article  Google Scholar 

  12. Park, J., Ko, K., Lee, C., Kim, C.-S.: BMBC: bilateral motion estimation with bilateral cost volume for video interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 109–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_7

    Chapter  Google Scholar 

  13. Park, J., Lee, C., Kim, C.S.: Asymmetric bilateral motion estimation for video frame interpolation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14539–14548 (2021)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30(10), 1852–1862 (2011)

    Article  Google Scholar 

  16. Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  17. Wang, S., et al.: Joint motion correction and super resolution for cardiac segmentation via latent optimisation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_2

    Chapter  Google Scholar 

  18. Wolberg, G.: Digital Image Warping, vol. 10662. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  19. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vision 127(8), 1106–1125 (2019)

    Article  Google Scholar 

  20. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2018)

    Article  Google Scholar 

  21. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Kings-China Scholarship Council PhD Scholarship Program and the National Institutes of Health Grant (R01HL121754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Y. et al. (2022). Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics