Skip to main content

Percolation and Epidemic Processes in One-Dimensional Small-World Networks

(Extended Abstract)

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

Abstract

We obtain tight thresholds for bond percolation on one-dimensional small-world graphs, and apply such results to obtain tight thresholds for the Independent Cascade process and the Reed-Frost process in such graphs.

Although one-dimensional small-world graphs are an idealized and unrealistic network model, a number of realistic qualitative epidemiological phenomena emerge from our analysis, including the epidemic spread through a sequence of local outbreaks, the danger posed by random connections, and the effect of super-spreader events.

LT’s work on this project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 834861). LB’s work on this project was partially supported by the ERC Advanced Grant 788893 AMDROMA, the EC H2020RIA project “SoBigData++” (871042), the MIUR PRIN project ALGADIMAR. AC’s and FP’s work on this project was partially supported by the University of Rome “Tor Vergata” under research program “Beyond Borders” project ALBLOTECH (grant no. E89C20000620005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The main difference is that Information Cascade allows the probability of “transmission” along an edge (uv) to be a quantity \(p_{(u,v)}\), but this generalization would also make sense and be well defined in the Reed-Frost model and in the percolation process. The case in which all the probabilities are equal is called the homogenous case.

  2. 2.

    We recall that the 3-\(\mathcal {SWG}(n)\) model and random 3-regular graphs are contiguous, i.e. each property that holds with probability \(1-o(1)\) on one of the two models, holds with probability \(1-o(1)\) also in the other one [21].

  3. 3.

    As usual, we say that an event E holds with high probability (for short, w.h.p.) if a constant \(\gamma >0\) exists such that \(\textbf{Pr} \left( E \right) >1-n^{-\gamma }\).

  4. 4.

    The quantity \(R_0\) in a SIR process is the expected number of people that an infectious person transmits the infection to, if all the contacts of that person are susceptible. In the percolation view of the process, it is the average degree of the percolation graph \(G_p\).

  5. 5.

    This result follows from the following two facts: the \((c+2)\)-regular version of the \(\mathcal {SWG}\) model is contiguous to the random \((c\,+\,2)\)-regular model [21], and the threshold for the latter obtained in [19].

  6. 6.

    With respect to \(\textrm{SIR}\), for each node we have a fourth, Exposed state, corresponding to the incubation period of a node.

  7. 7.

    We state the result for the case \(|I_0|=1\).

References

  1. Alon, N., Benjamini, I., Stacey, A.: Percolation on finite graphs and isoperimetric inequalities. Ann. Probab. 32(3), 1727–1745 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Publishing, 2nd edn. (2000)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  MATH  Google Scholar 

  4. Becchetti, L., Clementi, A., Denni, R., Pasquale, F., Trevisan, L., Ziccardi, I.: Percolation and epidemic processes in one-dimensional small-world networks. arXiv e-prints pp. arXiv-2103 (2021)

    Google Scholar 

  5. Becchetti, L., Clementi, A., Pasquale, F., Trevisan, L., Ziccardi, I.: Bond percolation in small-world graphs with power-law distribution. arXiv preprint arXiv:2205.08774 (2022)

  6. Benjamini, I., Berger, N.: The diameter of long-range percolation clusters on finite cycles. Random Struct. Algorithms 19(2), 102–111 (2001). https://doi.org/10.1002/rsa.1022

  7. Biskup, M.: On the scaling of the chemical distance in long-range percolation models. Ann. Probability 32(4), 2938–2977 (2004). https://doi.org/10.1214/009117904000000577

  8. Biskup, M.: Graph diameter in long-range percolation. Random Struct. Algorithms 39(2), 210–227 (2011). https://doi.org/10.1002/rsa.20349

  9. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Struct. Algorithms 31(1), 3–122 (2007). https://doi.org/10.1002/rsa.20168. https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20168

  10. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Comb. 24(1), 5–34 (2004). https://doi.org/10.1007/s00493-004-0002-2

  11. Callaway, D.S., Hopcroft, J.E., Kleinberg, J.M., Newman, M.E.J., Strogatz, S.H.: Are randomly grown graphs really random? Phys. Rev. E 64, 041902 (2001). https://doi.org/10.1103/PhysRevE.64.041902

    Article  Google Scholar 

  12. Chen, W., Lakshmanan, L., Castillo, C.: Information and influence propagation in social networks. Synthesis Lectures Data Manage. 5, 1–177 (10 2013). https://doi.org/10.2200/S00527ED1V01Y201308DTM037

  13. Chen, W., Lu, W., Zhang, N.: Time-critical influence maximization in social networks with time-delayed diffusion process. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2012, pp. 592–598. AAAI Press (2012)

    Google Scholar 

  14. Choi, H., Pant, M., Guha, S., Englund, D.: Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories. NPJ Quantum Information 5(1), 104 (2019)

    Google Scholar 

  15. Draief, M., Ganesh, A., Massoulié, L.: Thresholds for virus spread on networks. In: Proceedings of the 1st International Conference on Performance Evaluation Methodolgies and Tools, p. 51-es. valuetools 2006. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1190095.1190160

  16. Durrett, R., Kesten, H.: The critical parameter for connectedness of some random graphs. A Tribute to P. Erdos, pp. 161–176 (1990)

    Google Scholar 

  17. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  18. Garetto, M., Gong, W., Towsley, D.: Modeling malware spreading dynamics. In: IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), vol. 3, pp. 1869–1879 (2003). https://doi.org/10.1109/INFCOM.2003.1209209

  19. Goerdt, A.: The giant component threshold for random regular graphs with edge faults. Theor. Comput. Sci. 259(1-2), 307–321 (2001). https://doi.org/10.1016/S0304-3975(00)00015-3

  20. Janson, S.: Large deviations for sums of partly dependent random variables. Random Struct. Algorithms 24, May 2004. https://doi.org/10.1002/rsa.20008

  21. Janson, S., Rucinski, A., Luczak, T.: Random Graphs. Wiley, New York (2011)

    Google Scholar 

  22. Karlin, A.R., Nelson, G., Tamaki, H.: On the fault tolerance of the butterfly. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 125–133 (1994)

    Google Scholar 

  23. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. Theory Comput. 11(4), 105–147 (2015). https://doi.org/10.4086/toc.2015.v011a004, (An extended abstract appeared in Proc. of 9th ACM KDD ’03)

  24. Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys. 74(1), 41–59 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kott, A., Linkov, I. (eds.): Cyber Resilience of Systems and Networks. RSD, Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77492-3

    Book  Google Scholar 

  26. Lee, E.J., Kamath, S., Abbe, E., Kulkarni, S.R.: Spectral bounds for independent cascade model with sensitive edges. In: 2016 Annual Conference on Information Science and Systems, CISS 2016, Princeton, NJ, USA, 16–18 March 2016, pp. 649–653. IEEE (2016). https://doi.org/10.1109/CISS.2016.7460579

  27. Lemonnier, R., Seaman, K., Vayatis, N.: Tight bounds for influence in diffusion networks and application to bond percolation and epidemiology. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1, NIPS 2014, pp. 846–854. MIT Press, Cambridge (2014)

    Google Scholar 

  28. Lin, Q., et al.: A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 93, 211–216 (2020)

    Article  Google Scholar 

  29. Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in social networks. In: Proceedings of the IEEE International Conference on Data Mining, ICDM, pp. 439–448, December 2012. https://doi.org/10.1109/ICDM.2012.158

  30. Moore, C., Newman, M.E.: Exact solution of site and bond percolation on small-world networks. Phys. Rev. E 62, 7059–7064 (2000). https://doi.org/10.1103/PhysRevE.62.7059

  31. Moore, C., Newman, M.E.: Epidemics and percolation in small-world networks. Phys. Rev. E 61, 5678–5682 (2000). https://doi.org/10.1103/PhysRevE.61.5678

  32. Newman, C.M., Schulman, L.S.: One dimensional \(1/| j- i|^s\) percolation models: the existence of a transition for \(s \le 2\). Commun. Math. Phys. 104(4), 547–571 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Newman, M.E., Watts, D.J.: Scaling and percolation in the small-world network model. Phys. Rev. E 60(6), 7332 (1999)

    Article  Google Scholar 

  34. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015). https://doi.org/10.1103/RevModPhys.87.925

    Article  MathSciNet  Google Scholar 

  35. Shante, V.K., Kirkpatrick, S.: An introduction to percolation theory. Adv. Phys. 20(85), 325–357 (1971). https://doi.org/10.1080/00018737100101261

  36. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  37. Wei, W., Ming, T., Eugene, S., Braunstein, L.A.: Unification of theoretical approaches for epidemic spreading on complex networks. Reports Progress Phys. 80(3), 036603 (2017). https://doi.org/10.1088/1361-6633/aa5398

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Ziccardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becchetti, L., Clementi, A., Denni, R., Pasquale, F., Trevisan, L., Ziccardi, I. (2022). Percolation and Epidemic Processes in One-Dimensional Small-World Networks. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics