Skip to main content

Self-attention Based High Order Sequence Features of Dynamic Functional Connectivity Networks with rs-fMRI for Brain Disease Classification

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Included in the following conference series:

  • 1404 Accesses

Abstract

Dynamic functional connectivity networks (dFCN) based on rs-fMRI have demonstrated tremendous potential for brain function analysis and brain disease classification. Recently, studies have applied deep learning techniques (e.g., convolutional neural network, CNN) to dFCN classification, and achieved better performance than the traditional machine learning methods. However, previous deep learning methods usually perform successive convolutional operations on the input dFCN to obtain high-order brain network aggregation features, extracting them from each sliding window using a series split, which may neglect non-linear relations between different regions and the sequentiality of information. Important high-order sequence information of dFCN, which could further improve the classification performance, is ignored in these studies. To address these issues, we propose a self-attention-based convolutional recurrent network (SA-CRN) learning framework for brain disease classification with rs-fMRI data. The experimental results on a public dataset (i.e., ADNI) demonstrate the effectiveness of our proposed SA-CRN method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duc, N.T., Ryu, S., Qureshi, M.N.I., Choi, M., Lee, K.H., Lee, B.: 3D-deep learning based automatic diagnosis of Alzheimer’s disease with joint MMSE prediction using resting-state FMRI. Neuroinformatics 18(1), 71–86 (2020)

    Article  Google Scholar 

  2. Huang, F., et al.: Self-weighted adaptive structure learning for ASD diagnosis via multi-template multi-center representation. Med. Image Anal. 63, 101662 (2020)

    Article  Google Scholar 

  3. Yang, P., et al.: Fused sparse network learning for longitudinal analysis of mild cognitive impairment. IEEE Trans. Cybern. 51(1), 233–246 (2019)

    Article  Google Scholar 

  4. Jie, B., Liu, M., Lian, C., Shi, F., Shen, D.: Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis. Med. Image Anal. 63, 101709 (2020)

    Article  Google Scholar 

  5. Chen, X., Zhang, H., Zhang, L., Shen, C., Lee, S.W., Shen, D.: Extraction of dynamic functional connectivity from brain grey matter and white matter for mci classification. Hum. Brain Mapp. 38(10), 5019–5034 (2017)

    Article  Google Scholar 

  6. Zhao, F., Chen, Z., Rekik, I., Lee, S.W., Shen, D.: Diagnosis of autism spectrum disorder using central-moment features from low-and high-order dynamic resting-state functional connectivity networks. Front. Neurosci. 14, 258 (2020)

    Article  Google Scholar 

  7. Larrazabal, A.J., Nieto, N., Peterson, V., Milone, D.H., Ferrante, E.: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl. Acad. Sci. 117(23), 12592–12594 (2020)

    Article  Google Scholar 

  8. Karar, M.E., Hemdan, E.E.D., Shouman, M.A.: Cascaded deep learning classifiers for computer-aided diagnosis of Covid-19 and pneumonia diseases in x-ray scans. Complex Intell. Syst. 7(1), 235–247 (2021)

    Article  Google Scholar 

  9. Koo, C.S., Dolgunov, D., Koh, C.J.: Key tips for using computer-aided diagnosis in colonoscopy-observations from two different platforms. Endoscopy (2021)

    Google Scholar 

  10. Repici, A., et al.: Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology 159(2), 512–520 (2020)

    Article  Google Scholar 

  11. de Groof, A.J., et al.: Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: a pilot study (with video). Gastrointest. Endosc. 91(6), 1242–1250 (2020)

    Article  Google Scholar 

  12. Jarnalo, C.M., Linsen, P., Blazís, S., van der Valk, P., Dickerscheid, D.: Clinical evaluation of a deep-learning-based computer-aided detection system for the detection of pulmonary nodules in a large teaching hospital. Clin. Radiol. 76(11), 838–845 (2021)

    Article  Google Scholar 

  13. Misawa, M., et al.: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest. Endosc. 93(4), 960–967 (2021)

    Google Scholar 

  14. Wang, M., Lian, C., Yao, D., Zhang, D., Liu, M., Shen, D.: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network. IEEE Trans. Biomed. Eng. 67(8), 2241–2252 (2019)

    Article  Google Scholar 

  15. Lin, K., Jie, B., Dong, P., Ding, X., Bian, W., Liu, M.: Extracting sequential features from dynamic connectivity network with rs-fMRI data for AD classification. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 664–673. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_68

    Chapter  Google Scholar 

  16. Jie, B., Liu, M., Shen, D.: Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Med. Image Anal. 47, 81–94 (2018)

    Article  Google Scholar 

  17. Bronstein, M.M., Bruna, J., Cohen, T., Veličković, P.: Geometric deep learning: grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478 (2021)

  18. Park, N., Kim, S.: How do vision transformers work? arXiv preprint arXiv:2202.06709 (2022)

  19. Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017)

  20. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2495–2504 (2021)

    Google Scholar 

  21. Lei, B., et al.: Diagnosis of early Alzheimer’s disease based on dynamic high order networks. Brain Imaging Behav. 15(1), 276–287 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

Z. Zhang, B. Jie, Z. Wang, J. Zhou and Y. Yang were supported in part by NSFC (Nos. 61976006, 61573023, 61902003), Anhui-NSFC (Nos. 1708085MF145, 1808085MF171) and AHNU-FOYHE (No. gxyqZD2017010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Jie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Jie, B., Wang, Z., Zhou, J., Yang, Y. (2022). Self-attention Based High Order Sequence Features of Dynamic Functional Connectivity Networks with rs-fMRI for Brain Disease Classification. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics