Skip to main content

Super-Resolution 3D Human Shape from a Single Low-Resolution Image

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13662))

Included in the following conference series:

Abstract

We propose a novel framework to reconstruct super-resolution human shape from a single low-resolution input image. The approach overcomes limitations of existing approaches that reconstruct 3D human shape from a single image, which require high-resolution images together with auxiliary data such as surface normal or a parametric model to reconstruct high-detail shape. The proposed framework represents the reconstructed shape with a high-detail implicit function. Analogous to the objective of 2D image super-resolution, the approach learns the mapping from a low-resolution shape to its high-resolution counterpart and it is applied to reconstruct 3D shape detail from low-resolution images. The approach is trained end-to-end employing a novel loss function which estimates the information lost between a low and high-resolution representation of the same 3D surface shape. Evaluation for single image reconstruction of clothed people demonstrates that our method achieves high-detail surface reconstruction from low-resolution images without auxiliary data. Extensive experiments show that the proposed approach can estimate super-resolution human geometries with a significantly higher level of detail than that obtained with previous approaches when applied to low-resolution images. https://marcopesavento.github.io/SuRS/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3D people. https://3dpeople.com/en/. Accessed 6 Oct 2021

  2. Alldieck, T., Magnor, M., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1175–1186 (2019)

    Google Scholar 

  3. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3d people models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8387–8397 (2018)

    Google Scholar 

  4. Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.: Tex2shape: detailed full human body geometry from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2293–2303 (2019)

    Google Scholar 

  5. Barill, G., Dickson, N., Schmidt, R., Levin, D.I., Jacobson, A.: Fast winding numbers for soups and clouds. ACM Trans. Graph. 37, 1–12 (2018)

    Google Scholar 

  6. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  7. Chen, L., Ye, J., Jiang, L., Ma, C., Cheng, Z., Zhang, X.: Synthesizing cloth wrinkles by CNN-based geometry image superresolution. Comput. Anim. Vir. Worlds 29(3–4), e1810 (2018)

    Article  Google Scholar 

  8. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  9. Dinesh, C., Cheung, G., Bajić, I.V.: Super-resolution of 3D color point clouds via fast graph total variation. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1983–1987. IEEE (2020)

    Google Scholar 

  10. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: Proceedings Visualization’98 (Cat. No. 98CB36276), pp. 263–269. IEEE (1998)

    Google Scholar 

  11. He, T., Collomosse, J., Jin, H., Soatto, S.: Geo-PIFU: geometry and pixel aligned implicit functions for single-view human reconstruction. arXiv preprint arXiv:2006.08072 (2020)

  12. He, T., Xu, Y., Saito, S., Soatto, S., Tung, T.: Arch++: animation-ready clothed human reconstruction revisited. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11046–11056 (2021)

    Google Scholar 

  13. Hong, Y., Zhang, J., Jiang, B., Guo, Y., Liu, L., Bao, H.: StereoPiFu: depth aware clothed human digitization via stereo vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 535–545 (2021)

    Google Scholar 

  14. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: ARCH: animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2020)

    Google Scholar 

  15. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: Proceedings of the British Machine Vision Conference (2010). https://doi.org/10.5244/C.24.12

  16. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  17. Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)

    Google Scholar 

  18. Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene and object recognition. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  19. Li, Y., Tsiminaki, V., Timofte, R., Pollefeys, M., Gool, L.V.: 3D appearance super-resolution with deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9671–9680 (2019)

    Google Scholar 

  20. Li, Z., Oskarsson, M., Heyden, A.: Detailed 3d human body reconstruction from multi-view images combining voxel super-resolution and learned implicit representation. arXiv preprint arXiv:2012.06178 (2020)

  21. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  22. Malleson, C., Collomosse, J., Hilton, A.: Real-time multi-person motion capture from multi-view video and imus. Int. J. Comput. Vision 128(6), 1594–1611 (2020)

    Article  MathSciNet  Google Scholar 

  23. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  24. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  25. Ni, M., Lei, J., Cong, R., Zheng, K., Peng, B., Fan, X.: Color-guided depth map super resolution using convolutional neural network. IEEE Access 5, 26666–26672 (2017)

    Article  Google Scholar 

  26. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  27. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10975–10985 (2019)

    Google Scholar 

  28. Pesavento, M., Volino, M., Hilton, A.: Attention-based multi-reference learning for image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14697–14706 (2021)

    Google Scholar 

  29. Pesavento, M., Volino, M., Hilton, A.: Super-resolution appearance transfer for 4D human performances. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1791–1801 (2021)

    Google Scholar 

  30. Richard, A., Cherabier, I., Oswald, M.R., Tsiminaki, V., Pollefeys, M., Schindler, K.: Learned multi-view texture super-resolution. In: 2019 International Conference on 3D Vision (3DV), pp. 533–543. IEEE (2019)

    Google Scholar 

  31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  32. Rossi, M., Frossard, P.: Geometry-consistent light field super-resolution via graph-based regularization. IEEE Trans. Image Process. 27(9), 4207–4218 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFU: Pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314 (2019)

    Google Scholar 

  34. Saito, S., Simon, T., Saragih, J., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 84–93 (2020)

    Google Scholar 

  35. Sang, L., Haefner, B., Cremers, D.: Inferring super-resolution depth from a moving light-source enhanced RGB-D sensor: a variational approach. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1–10 (2020)

    Google Scholar 

  36. Sclaroff, S., Pentland, A.: Generalized implicit functions for computer graphics. ACM SIGGRAPH Comput. Graph. 25(4), 247–250 (1991)

    Article  Google Scholar 

  37. Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: SurfNet: generating 3D shape surfaces using deep residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6040–6049 (2017)

    Google Scholar 

  38. Song, X., et al.: Channel attention based iterative residual learning for depth map super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5631–5640 (2020)

    Google Scholar 

  39. Varol, G., et al.: BodyNet: volumetric inference of 3D human body shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 20–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_2

    Chapter  Google Scholar 

  40. Voynov, O., et al.: Perceptual deep depth super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5653–5663 (2019)

    Google Scholar 

  41. Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3387 (2020)

    Article  Google Scholar 

  42. Wu, H., Zhang, J., Huang, K.: Point cloud super resolution with adversarial residual graph networks. arXiv preprint arXiv:1908.02111 (2019)

  43. Xu, X., Chen, H., Moreno-Noguer, F., Jeni, L.A., De la Torre, F.: 3D human pose, shape and texture from low-resolution images and videos. IEEE Trans. Pattern Anal. Mach. Intell. (99), 1–1 (2021)

    Google Scholar 

  44. Yu, T., Zheng, Z., Guo, K., Liu, P., Dai, Q., Liu, Y.: Function4d: real-time human volumetric capture from very sparse consumer RGBD sensors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR2021), June 2021

    Google Scholar 

  45. Zhang, S., Liu, J., Liu, Y., Ling, N.: DimNet: dense implicit function network for 3d human body reconstruction. Comput. Graph. 98, 1–10 (2021)

    Article  Google Scholar 

  46. Zhang, S., Chang, S., Lin, Y.: End-to-end light field spatial super-resolution network using multiple epipolar geometry. IEEE Trans. Image Process. 30, 5956–5968 (2021)

    Article  Google Scholar 

  47. Zheng, Z., Yu, T., Liu, Y., Dai, Q.: PaMIR: parametric model-conditioned implicit representation for image-based human reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  48. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: DeepHuman: 3D human reconstruction from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7739–7749 (2019)

    Google Scholar 

  49. Zins, P., Xu, Y., Boyer, E., Wuhrer, S., Tung, T.: Data-driven 3D reconstruction of dressed humans from sparse views. In: 2021 International Conference on 3D Vision (3DV), pp. 494–504. IEEE (2021)

    Google Scholar 

Download references

Acknowledgement

This research was supported by UKRI EPSRC Platform Grant EP/P022529/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pesavento .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3922 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pesavento, M., Volino, M., Hilton, A. (2022). Super-Resolution 3D Human Shape from a Single Low-Resolution Image. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20086-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20085-4

  • Online ISBN: 978-3-031-20086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics