Skip to main content

Probiotic Concepts of Predictive, Preventive, and Personalized Medical Approach for Obesity: Lactic Acid Bacteria and Bifidobacteria Probiotic Strains Improve Glycemic and Inflammation Profiles

  • Chapter
  • First Online:
  • 333 Accesses

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 16))

Abstract

The use of probiotics demonstrate efficacy against obesity and metabolic syndrome (MetS). Detection of effective probiotic strains for hyperglycemia and immunity correction is important task. Current study was evaluating an influence of Lactobacillus casei IMV B-7280 separately and composition L. casei IMV B-7280 / Bifidobacterium animalis VKB / B. animalis VKL on the levels of blood glucose and immunity in obese mice. Obesity was induced by fat-enriched diet (FED) in male BALB/c mice. Obese mice were transferred to standard diet and received per os probiotic strains daily during 10 days. We measured tumor necrosis factor-alpha (TNF-alpha) in blood serum using enzyme-linked immunosorbent assay and functional activity of peritoneal exudate macrophages (PEMs). Glucose levels in blood were defined with glucometer.

We ascertained that all probiotic strains induced reducing mice weight and visceral fat, normalization of TNF-alpha production and functional activity of PEMs. Treatment with L. casei IMV B-7280 was associated with decreasing blood glucose levels. No normalization of glucose and TNF-alpha levels was observed in obese mice, transferred to standard diet without probiotic treatment; although we revealed decreasing their weight and visceral fat and partial recover of functional activity of PEMs. In conclusion, probiotic strain L. casei IMV B-7280 (separately) and composition L. casei IMV B-7280 / B. animalis VKB / B. animalis VKL can re-equilibrate metabolic and inflammation indices in mouse obesity model. L. casei IMV B-7280 alone was more efficient in decreasing glucose levels than composition of strains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

FED:

Fat-enriched diet

LAB:

Lactic acid bacteria

FR:

Functional reserve

HDL :

High density lipoprotein

IL:

Interleukin

LPS :

Lipopolysaccharides

TNF-α:

Tumor necrosis factor-α

IFN- γ:

Interferon-γ

MetS:

Metabolic syndrome

NBT:

Nitro-blue tetrazolium

PEMs:

Peritoneal exudate macrophages

PN:

Phagocytic number

PBS:

Phosphate buffered saline

PI:

Phagocytic index

RBA:

Respiratory burst activity

SCFA :

Short-chain fatty acid

DM :

Diabetes mellitus

T2DM :

Type 2 diabetes mellitus

FBG:

Fasting blood glucose

References

  1. WHO/FAO scientific document. http://who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 7 August 2018

  2. Harsch IA, Konturek PC (2018) The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into “Old” Diseases. Med Sci (Basel) 6(2):E32. https://doi.org/10.3390/medsci6020032

    Article  CAS  Google Scholar 

  3. Musso G, Gambino R, Cassader M (2010) Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 33(10):2277–2284. https://doi.org/10.2337/dc10-0556

    Article  Google Scholar 

  4. Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, Stanton C (2016) Gut microbiota, obesity and diabetes. Postgrad Med J 92(1087):286–300. https://doi.org/10.1136/postgradmedj-2015-133285

    Article  CAS  Google Scholar 

  5. Chobot A, Górowska-Kowolik K, Sokołowska M, Jarosz-Chobot P (2018) Obesity and diabetes-not only a simple link between two epidemics. Diabetes Metab Res Rev 21:e3042. https://doi.org/10.1002/dmrr.3042

    Article  Google Scholar 

  6. Houghton D, Hardy T, Stewart C, Errington L, Day CP, Trenell MI, Avery L (2018) Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia 61:1700–1711. https://doi.org/10.1007/s00125-018-4632-0

    Article  CAS  Google Scholar 

  7. Vaarala O, Atkinson MA, Neu J (2008) The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57(10):2555–2562. https://doi.org/10.2337/db08-0331

    Article  CAS  Google Scholar 

  8. Gomes AC, Bueno AA, de Souza RG, Mota JF (2014) Gut microbiota, probiotics and diabetes. Nutr J 17(13):60. https://doi.org/10.1186/1475-2891-13-60

    Article  Google Scholar 

  9. Creely SJ, McTernan PG, Kusminski CM, Fisher FM, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:E740–E747

    Article  CAS  Google Scholar 

  10. Fernández-Real JM, Pickup JC (2008) Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab 19(1):10–16. https://doi.org/10.1016/j.tem.2007.10.004

    Article  CAS  Google Scholar 

  11. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–1156. https://doi.org/10.1126/science.aao5774

    Article  CAS  Google Scholar 

  12. Zhang M, Yang XJ (2016) Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J Gastroenterol 22(40):8905–8909. https://doi.org/10.3748/wjg.v22.i40.8905

    Article  CAS  Google Scholar 

  13. Guijarro A, Laviano A, Meguid MM (2006) Hypothalamic integration of immune function and metabolism. Prog Brain Res 153:367–405. https://doi.org/10.1016/S0079-6123(06)53022-5

    Article  CAS  Google Scholar 

  14. Savcheniuk OA, Virchenko OV, Falalyeyeva TM, Beregova Tetyana V, Babenko LP, Lazarenko LM, Demchenko OM, Bubnov RV, Spivak MY (2014) The efficacy of probiotics for monosodium glutamate-induced obesity: dietology concerns and opportunities for prevention. EPMA Journal 5:2. https://doi.org/10.1186/1878-5085-5-2

    Article  Google Scholar 

  15. Zhang Q, Wu Y, Fei X (2016) Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Medicina (Kaunas) 52(1):28–34. https://doi.org/10.1016/j.medici.2015.11.008

    Article  CAS  Google Scholar 

  16. Zhang Q, Yucheng W, Fei X (2015) Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Medicina 52(1):28–34

    Google Scholar 

  17. Wang X, Juan QF, He YW, Zhuang L, Fang YY, Wang YH (2017) Multiple effects of probiotics on different types of diabetes: a systematic review and meta-analysis of randomized, placebo-controlled trials. J Pediatr Endocrinol Metab 30(6):611–622. https://doi.org/10.1515/jpem-2016-0230

    Article  CAS  Google Scholar 

  18. Horvath A, Leber B, Schmerboeck B, Tawdrous M, Zettel G, Hartl A, Madl T, Stryeck S, Fuchs D, Lemesch S, Douschan P, Krones E, Spindelboeck W, Durchschein F, Rainer F, Zollner G, Stauber RE, Fickert P, Stiegler P, Stadlbauer V (2016) Randomised clinical trial: the effects of a multispecies probiotic vs. placebo on innate immune function, bacterial translocation and gut permeability in patients with cirrhosis. Aliment Pharmacol Ther 44(9):926–935. https://doi.org/10.1111/apt.13788

    Article  CAS  Google Scholar 

  19. He J, Zhang F, Han Y (2017) Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: A meta-analysis of RCTs. Chen. W. Medicine 96(51):e9166. https://doi.org/10.1097/MD.0000000000009166

    Article  CAS  Google Scholar 

  20. Berger VW, Alperson SY (2009) A general framework for the evaluation of clinical trial quality. Rev Recent Clin Trials 4(2):79–88

    Article  Google Scholar 

  21. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC (2014) Sanders ME Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514

    Article  Google Scholar 

  22. Bubnov RV, Spivak MY, Lazarenko LM, Bomba A, Boyko NV (2015) Probiotics and immunity: provisional role for personalized diets and disease prevention. EPMA J 6:14. https://doi.org/10.1186/s13167-015-0036-0

    Article  Google Scholar 

  23. Reid G, Abrahamsson T, Bailey M, Bindels LB, Bubnov R, Ganguli K, Martoni C, O'Neill C, Savignac HM, Stanton C, Ship N, Surette M, Tuohy K, van Hemert S (2017) How do probiotics and prebiotics function at distant sites? Benef Microbes 20:1–14. https://doi.org/10.3920/BM2016.0222

    Article  Google Scholar 

  24. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV, Spivak MY (2017) Comparative study of probiotic effects of lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J 8(4):357–376. https://doi.org/10.1007/s13167-017-0117-3

    Article  Google Scholar 

  25. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9(2):205–223. https://doi.org/10.1007/s13167-018-0132-z

    Article  Google Scholar 

  26. Lazarenko LM, Babenko LP, Bubnov RV, Demchenko OM, Zotsenko VM, Boyko NV et al (2017) Imunobiotics are the novel biotech drugs with antibacterial and immunomodulatory properties. Mikrobiol Z 79(1):66–75. https://doi.org/10.15407/microbiolj79.01

    Article  Google Scholar 

  27. Mokrozub VV, Lazarenko LM, Sichel LM, Bubnov RV, Spivak MY (2015) The role of beneficial bacteria wall elasticity in regulating innate immune response. EPMA J 6:13. https://doi.org/10.1186/s13167-015-0035-1

    Article  Google Scholar 

  28. Home Office. Animals (Scientific Procedures) Act (1986) Code of practice for the housing and Care of Animals Used in scientific procedures. Available online: http://www.official-documents.gov.uk/document/hc8889/hc01/0107/0107.pdf. accessed 28 July 2018

  29. Dubaniewicz A, Hoppe A (2004) The spontaneous and stimulated nitroblue tetrazolium (NBT) tests in mononuclear cells of patients with tuberculosis. Rocz Akad Med Bialymst 49:252–255

    CAS  Google Scholar 

  30. Aggarwal J, Swami G, Kumar M (2013) Probiotics and their effects on metabolic diseases: an update. J Clin Diagn Res 7(1):173–177. https://doi.org/10.7860/JCDR/2012/5004.2701

    Article  CAS  Google Scholar 

  31. Góralczyk K, Szymańska J, Szot K, Fisz J, Rość D (2016) Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers Med Sci 31(5):825–831. https://doi.org/10.1007/s10103-016-1880-4

    Article  Google Scholar 

  32. Macharia M, Kengne AP, Blackhurst DM, Erasmus RT, Matsha TE (2014) The impact of chronic untreated hyperglycaemia on the long-term stability of paraoxonase 1 (PON1) and antioxidant status in human sera. J Clin Pathol 67(1):55–59. https://doi.org/10.1136/jclinpath-2013-201646

    Article  CAS  Google Scholar 

  33. Tzanavari T, Giannogonas P, Karalis KP (2010) TNF-alpha and obesity. Curr Dir Autoimmun 11:145–156. https://doi.org/10.1159/000289203

    Article  CAS  Google Scholar 

  34. Dragano NR, Haddad-Tovolli R, Velloso LA (2017) Leptin, Neuroinflammation and obesity. Front Horm Res 48:84–96. https://doi.org/10.1159/000452908

    Article  CAS  Google Scholar 

  35. Hiippala K, Jouhten H, Ronkainen A, Hartikainen A, Kainulainen V, Jalanka J, Satokari R (2018) The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 10(8):E988. https://doi.org/10.3390/nu10080988

    Article  CAS  Google Scholar 

  36. Ueda Y, Kayama H, Jeon SG, Kusu T, Isaka Y, Rakugi H, Yamamoto M, Takeda K (2010) Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int Immunol 22(12):953–962. https://doi.org/10.1093/intimm/dxq449

    Article  CAS  Google Scholar 

  37. Mohamadshahi M, Veissi M, Haidari F, Javid AZ, Mohammadi F, Shirbeigi E (2014) Effects of probiotic yogurt consumption on lipid profile in type 2 diabetic patients: a randomized controlled clinical trial. J Res Med Sci 19(6):531–536

    CAS  Google Scholar 

  38. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8(1):42. https://doi.org/10.1186/s13073-016-0303-2

    Article  CAS  Google Scholar 

  39. Li Z, Jin H, Oh SY, Ji GE (2016) Anti-obese effects of two lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochem Biophys Res Commun 480(2):222–227. https://doi.org/10.1016/j.bbrc.2016.10.031

    Article  CAS  Google Scholar 

  40. Song M, Park S, Lee H, Min B, Jung S, Park S, Kim E, Oh S (2015) Effect of lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice. J Dairy Sci 98(3):1492–1501. https://doi.org/10.3168/jds.2014-8586

    Article  CAS  Google Scholar 

  41. Arora T, Anastasovska J, Gibson G, Tuohy K, Sharma RK, Bell J, Frost G (2012) Effect of lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice. Br J Nutr 108(8):1382–1389. https://doi.org/10.1017/S0007114511006957

    Article  CAS  Google Scholar 

  42. Wu CC, Weng WL, Lai WL, Tsai HP, Liu WH, Lee MH, Tsai YC (2015) Effect of lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evid Based Complement Alternat Med 2015:391767. https://doi.org/10.1155/2015/391767

    Article  Google Scholar 

  43. Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, Sung MK, McGregor RA, Choi MS (2013) Supplementation of lactobacillus curvatus HY7601 and lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8(3):e59470. https://doi.org/10.1371/journal.pone.0059470

    Article  CAS  Google Scholar 

  44. Kondo S, Xiao JZ, Satoh T, Odamaki T, Takahashi S, Sugahara H, Yaeshima T, Iwatsuki K, Kamei A, Abe K (2010) Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 74(8):1656–1661

    Article  CAS  Google Scholar 

  45. Moya-Pérez A, Romo-Vaquero M, Tomás-Barberán F, Sanz Y, García-Conesa MT (2014) Hepatic molecular responses to Bifidobacterium pseudocatenulatum CECT 7765 in a mouse model of diet-induced obesity. Nutr Metab Cardiovasc Dis 24(1):57–64. https://doi.org/10.1016/j.numecd.2013.04.011

    Article  CAS  Google Scholar 

  46. Wadhwa PD, Buss C, Entringer S, Swanson JM (2009) Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 27(5):358–368. https://doi.org/10.1055/s-0029-1237424

    Article  CAS  Google Scholar 

  47. Soderborg TK, Borengasser SJ, Barbour LA, Friedman JE (2016) Microbial transmission from mothers with obesity or diabetes to infants: an innovative opportunity to interrupt a vicious cycle. Diabetologia 59(5):895–906. https://doi.org/10.1007/s00125-016-3880-0

    Article  CAS  Google Scholar 

  48. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, t al. (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24(1):133–145.e5. https://doi.org/10.1016/j.chom.2018.06.005

    Article  CAS  Google Scholar 

  49. Kikuchi K, Ben Othman M, Sakamoto K (2018) Sterilized bifidobacteria suppressed fat accumulation and blood glucose level. Biochem Biophys Res Commun 501(4):1041–1047. https://doi.org/10.1016/j.bbrc.2018.05.105

    Article  CAS  Google Scholar 

Download references

Conflicts of Interest

Declare conflicts of interest or state “The authors declare no conflict of interest.”

Ethics

This study has been approved by the ethics committee of institutional review board and Special Academic Council on Doctoral Thesis of D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine (protocol N 7 issued 03.07.2018). No human subjects were included to the study.

Funding

This research received financial support from the State Fund for Fundamental Research of Ukraine via the framework of the project Ф64/28–2015.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazarenko, L. et al. (2023). Probiotic Concepts of Predictive, Preventive, and Personalized Medical Approach for Obesity: Lactic Acid Bacteria and Bifidobacteria Probiotic Strains Improve Glycemic and Inflammation Profiles. In: Boyko, N., Golubnitschaja, O. (eds) Microbiome in 3P Medicine Strategies. Advances in Predictive, Preventive and Personalised Medicine, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-19564-8_14

Download citation

Publish with us

Policies and ethics