Skip to main content

Weakly Supervised Named Entity Recognition for Carbon Storage Using Deep Neural Networks

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Abstract

Applying Transfer-Learning based on pre-trained language models has become popular in Natural Language Processing. In this paper, we present a weakly supervised Named Entity Recognition system that uses a pre-trained BERT model and applies two consecutive fine tuning steps. We aim to reduce the amount of human labour required for annotating data by proposing a framework which starts by creating a data set that uses lexicons and pattern recognition on documents. This first noisy data set is used in the first fine tuning step. Then, we apply a second fine tuning step on a small manually refined subset of data. We apply and compare our system with the standard fine tuning BERT approach on large amount of old scanned document. Those documents are North Sea Oil & Gas reports and the knowledge extraction would be used to assess the possibility of future carbon sequestration. Furthermore, we empirically demonstrate the flexibility of our framework showing that it can be applied to entity-identifications in other domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abid, A., Zou, J.Y.: Improving training on noisy stuctured labels. CoRR (2020)

    Google Scholar 

  2. Akbik, A., Bergmann, T., Vollgraf, R.: Pooled contextualized embeddings for named entity recognition. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 724–728 (2019)

    Google Scholar 

  3. Arman, M., Wlodarczyk, S., Bennacer Seghouani, N., Bugiotti, F.: PROCLAIM: an unsupervised approach to discover domain-specific attribute matchings from heterogeneous sources. In: Herbaut, N., La Rosa, M. (eds.) CAiSE 2020. LNBIP, vol. 386, pp. 14–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58135-0_2

    Chapter  Google Scholar 

  4. Bahri, D., Jiang, H., Gupta, M.R.: Deep k-nn for noisy labels. CoRR (2020)

    Google Scholar 

  5. Clark, K., Luong, M.-T., Manning, C.D., Le, Q.V:. Semi-supervised sequence modeling with cross-view training. CoRR (2018)

    Google Scholar 

  6. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. CoRR (2011)

    Google Scholar 

  7. Consoli, B., Santos, J., Gomes, D., Cordeiro, F., Vieira, R., Moreira,V.: Embeddings for named entity recognition in geoscience Portuguese literature. In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 4625–4630, Marseille, France, 2020. European Language Resources Association

    Google Scholar 

  8. Deng, Z., Dong, Y., Pang, T., Su, H., Zhu, J.: Adversarial distributional training for robust deep learning. CoRR (2020)

    Google Scholar 

  9. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805 (2018)

    Google Scholar 

  10. Frenay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

    Article  MATH  Google Scholar 

  11. Ghosh, A., Kumar, H., Sastry, P.S.: Robust loss functions under label noise for deep neural networks. AAAI’17, pp. 1919–1925. AAAI Press (2017)

    Google Scholar 

  12. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. CoRR (2015)

    Google Scholar 

  13. Khan, M.R., Ziyadi, M., Abdelhady, M.: Mt-bioner: Multi-task learning for biomedical named entity recognition using deep bidirectional transformers. CoRR (2020)

    Google Scholar 

  14. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. CoRR (2018)

    Google Scholar 

  15. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to learn from noisy labeled data. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5046–5054 (2019)

    Google Scholar 

  16. Licence. Oil and Gas Authority Licence (2022) Accessed Jan 2022. https://www.ogauthority.co.uk/media/5850/oga-open-user-licence_210619v2.pdf/

  17. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09, pp. 1003–1011, USA, 2009. Association for Computational Linguistics

    Google Scholar 

  18. Nakayama, H.: seqeval: A python framework for sequence labeling evaluation (2018). https://github.com/chakki-works/seqeval

  19. Peters, M.E.,et al.: Deep contextualized word representations, CoRR (2018)

    Google Scholar 

  20. Qiu, Q., Xie, Z., Liang, W., Tao, L.: Gner: a generative model for geological named entity recognition without labeled data using deep learning. Earth Space Sci. 6, 931–946 (2019)

    Article  Google Scholar 

  21. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Sen, W., Ré, C.: Snorkel. Proc. VLDB Endowment 11(3), 269–282 (2017)

    Article  Google Scholar 

  22. Robins, A.V.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7, 123–146 (1995)

    Article  Google Scholar 

  23. Rolnick, D., Veit, A., Belongie, S.J., Shavit, N:. Deep learning is robust to massive label noise. CoRR (2017)

    Google Scholar 

  24. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108 (2019)

    Google Scholar 

  25. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. CoRR (2018)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Oil & Gas Authority that provided the access to wells reports used in our research (under the Oil and Gas Authority Licence [16]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Bugiotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Londoño, R.G., Wlodarczyk, S., Arman, M., Bugiotti, F., Seghouani, N.B. (2022). Weakly Supervised Named Entity Recognition for Carbon Storage Using Deep Neural Networks. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics