Skip to main content

Chitin and Chitosan Nanocomposites: From the Synthesis to the Application

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Chitin is a bio-based and biodegradable polymer since it is the second most abundant natural polysaccharide on earth after cellulose. It is composed of N-acetyl-d-glucosamine, and it is found in different organisms such as in the exoskeleton of crustacean, insects, annelids, mollusks, plants, and some microorganisms. On the other hand, Chitosan is generally obtained by the controlled deacetylation of chitin in the presence of alkali, composed of randomly distributed β-(1–4) linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit). Chitin and chitosan are different based on the degree of deacetylation. These polysaccharides possess different physicochemical and biological properties which has been modified and/or improved thanks to the development of chitin and chitosan nanocomposites. There are various methods for the development of chitin and chitosan-based nanocomposites, including solvent casting, spray coating, layer-by-layer, and extrusion. Also, it has been combined with different nano compounds to obtain these nano composites. This chapter summarizes some of the most important technologies involved in synthesizing chitin and chitosan nanocomposites, as well as the study of its physicochemical and biological properties, its production costs and ending in the analysis and discussion of the applications that these materials have in various fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ilyas, R.A., Aisyah, H.A., Nordin, A.H., Ngadi, N., Zuhri, M.Y.M., Asyraf, M.R.M., Sapuan, S.M., Zainudin, E.S., Sharma, S., Abral, H., Asrofi, M., Syafri, E., Sari, N.H., Rafidah, M., Zakaria, S.Z.S., Razman, M.R., Majid, N.A., Ramli, Z., Azmi, A., Bangar, S.P., Ibrahim, R.: Natural-fiber-reinforced chitosan, chitosan blends and their nanocomposites for various advanced applications. Polymers 14, 874–910 (2022). https://doi.org/10.3390/polym14050874

    Article  CAS  Google Scholar 

  2. Vallejo-Domínguez, D., Rubio-Rosas, E., Aguila-Almanza, E., Hernández-Cocoletzi, H., Ramos-Cassellis, M.E., Luna-Guevara, M.L., Rambabu, K., Manickam, S., Siti Halimatul Munawaroh, H., Loke Show, P.: Ultrasound in the deproteinization process for chitin and chitosan production. Ultrason. Sonochem. 72, 105417 (2021). https://doi.org/10.1016/j.ultsonch.2020.105417

  3. Teixeira-Santos, R., Lima, M., Gomes, L.C., Mergulhã, F.J.: Antimicrobial coatings based on chitosan to prevent implant-associated infections: a systematic review. iScience 24, 103480 https://doi.org/10.1016/j.isci

  4. Pandit, A., Indurkar, A., Deshpande, C., Jain, R., Dandekar, P.: A systematic review of physical techniques for chitosan degradation. Carbohydr. Polym. Technol. Appl. 2, 100033 (2021). https://doi.org/10.1016/j.carpta.2021.100033

    Article  CAS  Google Scholar 

  5. Pal, K., Bharti, D., Sarkar, P., Anis, A., Kim, D., Chałas, R., Maksymiuk, P., Stachurski, P., Jarzębski, M.: Selected applications of chitosan composites. Int. J. Mol. Sci. 22, 10968 (2021). https://doi.org/10.3390/ijms222010968

    Article  CAS  Google Scholar 

  6. Rashid, T.U., Rahman, M.M., Kabir, S., Shamsuddin, S.M., Khan, M.A.: A new approach for the preparation of chitosan from γ-irradiation of prawn shell: effects of radiation on the characteristics of chitosan. Polym. Int. 61, 1302–1308 (2012). https://doi.org/10.1002/pi.4207

    Article  CAS  Google Scholar 

  7. Ababneh, H., Hameed, B.H.: Chitosan-derived hydrothermally carbonized materials and its applications: a review of recent literature. Int. J. Biol. Macromol. 186 (2021). https://doi.org/10.1016/j.ijbiomac.2021.06.161

  8. Agarwal, C., Kóczán, Z., Börcsök, Z., Halász, K., Pásztory, Z.: Valorization of Larix decidua Mill. bark by functionalizing bioextract onto chitosan films for sustainable active food packaging. Carbohydr. Polym. 271, 118409 (2021). https://doi.org/10.1016/j.carbpol.2021.118409

  9. Rasweefali, M.K., Sabu, S., Sunooj, K.V., Sasidharan, A., Xavier, K.A.M.: Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp. Carbohydr. Polym. Technol. Appl. 2, 100032 (2021). https://doi.org/10.1016/j.carpta.2020.100032

    Article  CAS  Google Scholar 

  10. Omer, A.M., Sadik, W.A.A., El-Demerdash, A.G.M., Hassan, H.S.: Formulation of pH-sensitive aminated chitosan–gelatin crosslinked hydrogel for oral drug delivery. J. Saudi Chem. Soc. 25, 101384 (2021). https://doi.org/10.1016/j.jscs.2021.101384

    Article  CAS  Google Scholar 

  11. Azahar, S.S., Hamidon, T.S., Latip, A.F.A., Hussin, M.H.: Physicochemical and conductivity studies of chitosan-tapioca flour-LiBF4 gel polymer electrolytes. Chem. Phys. Impact. 3, 100055 (2021). https://doi.org/10.1016/j.chphi.2021.100055

    Article  Google Scholar 

  12. Zhang, H.M., Jiang, H.R., Chen, D.J., Shen, Z.L., Mao, Y.J., Liang, Y.S., Loor, J., Yang, Z.P.: Evaluation of a povidone-iodine and chitosan-based barrier teat dip in the prevention of mastitis in dairy cows. J. Integr. Agric. 20, 1615–1625 (2021). https://doi.org/10.1016/S2095-3119(20)63418-9

    Article  CAS  Google Scholar 

  13. Sharifi, E., Chehelgerdi, M., Fatahian-Kelishadrokhi, A., Yazdani-Nafchi, F., Ashrafi-Dehkordi, K.: Comparison of therapeutic effects of encapsulated Mesenchymal stem cells in Aloe vera gel and Chitosan-based gel in healing of grade-II burn injuries. Regener. Ther. 18, 30–37 (2021). https://doi.org/10.1016/j.reth.2021.02.007

    Article  CAS  Google Scholar 

  14. Wang, X., Wang, Y., Huang, L., Li, B., Yan, X., Huang, Z., Wang, Y., Kipper, M.J., Tang, J.: Sensitive Cu2+ detection by reversible on-off fluorescence using Eu3+ complexes in SiO2, in chitosan/polyethylene oxide nanofibers. Mater. Des. 205, 109708 (2021). https://doi.org/10.1016/j.matdes.2021.109708

    Article  CAS  Google Scholar 

  15. Anggani, H.S., Rusli, V., Bachtiar, E.W.: Chitosan gel prevents the growth of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola in mini-implant during orthodontic treatment. Saudi Dent. J. 33, 1024–1028 (2021). https://doi.org/10.1016/j.sdentj.2021.06.003

    Article  Google Scholar 

  16. Lyu, R., Li, Z., Liang, C., Zhang, C., Xia, T., Wu, M., Wang, Y., Wang, L., Luo, X., Xu, C.: Acylated carboxymethyl chitosan grafted with MPEG-1900 as a high-efficiency demulsifier for O/W crude oil emulsions. Carbohydr. Polym. Technol. Appl. 2, 100144 (2021). https://doi.org/10.1016/j.carpta.2021.100144

    Article  CAS  Google Scholar 

  17. Jayanudin, Lestari, R.S.D., Kustiningsih, I., Irawanto, D., Bahaudin, R., Wardana, R.L.A., Muhammad, F., Suyuti, M., Luthfi, M.: Preparation of chitosan microspheres as carrier material to controlled release of urea fertilizer. S. Afr. J. Chem. Eng. 38, 70–77 (2021). https://doi.org/10.1016/j.sajce.2021.08.005

  18. Peniche, H., Peniche, C.: Chitosan nanoparticles: a contribution to nanomedicine. Polym. Int. 60, 883–889 (2011). https://doi.org/10.1002/pi.3056

    Article  CAS  Google Scholar 

  19. Badawy, M.: Chemical modification of chitosan: synthesis and biological activity of new heterocyclic chitosan derivatives. Polym. Int. 57, 254–261 (2008). https://doi.org/10.1002/pi.2333

    Article  CAS  Google Scholar 

  20. Sathiyabama, M., Akila, G.: Water soluble Chitosan extraction from mycelium of Alternaria solani and its field evaluation on Tomato plants. Carbohydr. Polym. Technol Appl. 2, 100101 (2021). https://doi.org/10.1016/j.carpta.2021.100101

    Article  CAS  Google Scholar 

  21. Ali Said Al Hoqani, H., Hamed Khalifa Al Shaqsi, N., Amzad Hossin, M., Abdullah Al Sibani, M.: Structural characterization of polymeric chitosan and mineral from Omani shrimp shells. Water-Energy Nexus 4, 199–207 (2021). https://doi.org/10.1016/j.wen.2021.11.002

  22. Li, Z., Liu, X., Zhuang, X., Guan, Y., Yao, K.: Manufacture and properties of chitosan/N, O-carboxymethylated chitosan/viscose rayon antibacterial fibers. J. Appli. Polym. Sci. 84, 2049–2059 (2002). https://doi.org/10.1002/app.10501

    Article  CAS  Google Scholar 

  23. Salleh, N.A., Kheawhom, S., Mohamad, A.A.: Chitosan as biopolymer binder for graphene in supercapacitor electrode. Results Phys. 25 (2021). https://doi.org/10.1016/j.rinp.2021.104244

  24. Ikram, R., Jan, B.M., Qadir, M.A., Sidek, A., Stylianakis, M.M., Kenanakis, G.: Recent advances in chitin and chitosan/graphene-based bio-nanocomposites for energetic applications. Polymers 13, 3266 (2021). https://doi.org/10.3390/polym13193266

    Article  CAS  Google Scholar 

  25. Freitas, F.P., Carvalho, A.M.M.L., de Carneiro, A.C.O., De Magalhães, M.A., Xisto, M.F., Canal, W.D.: Adsorption of neutral red dye by chitosan and activated carbon composite films. Heliyon 7, e07629 (2021). https://doi.org/10.1016/j.heliyon.2021.e07629

  26. Kostag, M., El Seoud, O.A.: Sustainable biomaterials based on cellulose, chitin and chitosan composites—a review. Carbohydr. Polym. Technol. Appl. 2, 100079 (2021). https://doi.org/10.1016/j.carpta.2021.100079

    Article  CAS  Google Scholar 

  27. Miranda, M.E.S., Marcolla, C., Rodrígues, C.A., Wilhelm, H.M., Sierakowski, M.R., Bresolin, T.M.B., de Freitas, R.A.: Chitosan and N-carboxymethylchitosan: I. The role of N-carboxymethylation of chitosan in the thermal stability and dynamic mechanical properties of its films. Polym. Int. 55, 961–969 (2006). https://doi.org/10.1002/pi.2060

  28. Aljuhani, A., Riyadh, S.M., Khalil, K.D.: Chitosan/CuO nanocomposite films mediated regioselective synthesis of 1,3,4-trisubstituted pyrazoles under microwave irradiation. J. Saudi Chem. Soc. 25 (2021). https://doi.org/10.1016/j.jscs.2021.101276

  29. Qu, B., Luo, Y.: A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications. Carbohydr. Polym. Technol. Appl. 2, 100102 (2021). https://doi.org/10.1016/j.carpta.2021.100102

    Article  CAS  Google Scholar 

  30. Danti, S., Anand, S., Azimi, B., Milazzo, M., Fusco, A., Ricci, C., Zavagna, L., Linari, S., Donnarumma, G., Lazzeri, A., Moroni, L., Mota, C., Berrettini, S.: Chitin nanofibril application in tympanic membrane scaffolds to modulate inflammatory and immune response. Pharmaceutics 13, 1440 (2021). https://doi.org/10.3390/pharmaceutics13091440

    Article  CAS  Google Scholar 

  31. Coltelli, M.B., Cinelli, P., Gigante, V., Aliotta, L., Morganti, P., Panariello, L., Lazzeri, A.: Chitin nanofibrils in poly(lactic acid) (PLA) nanocomposites: Dispersion and thermo-mechanical properties. Int. J. Mol. Sci. 20, 504 (2019). https://doi.org/10.3390/ijms20030504

    Article  CAS  Google Scholar 

  32. Coltelli, M.B., Aliotta, L., Vannozzi, A., Morganti, P., Panariello, L., Danti, S., Neri, S., Fernandez-Avila, C., Fusco, A., Donnarumma, G., Lazzeri, A.: Properties and skin compatibility of films based on poly(lactic acid) (PLA) bionanocomposites incorporating chitin nanofibrils (CN). J. Funct. Biomater. 11, 21 (2020). https://doi.org/10.3390/jfb11020021

    Article  CAS  Google Scholar 

  33. Salaberria, A.M., Diaz, R.H., Andrés, M.A., Fernandes, S.C.M., Labidi, J.: The antifungal activity of functionalized chitin nanocrystals in poly(lactic Acid) films. Materials 10, 546 (2017). https://doi.org/10.3390/ma10050546

    Article  CAS  Google Scholar 

  34. Smirnova, N.V., Kolbe, K.A., Dresvyanina, E.N., Grebennikov, S.F., Dobrovolskaya, I.P., Yudin, V.E., Luxbacher, T., Morganti, P.: Effect of chitin nanofibrils on biocompatibility and bioactivity of the chitosan-based composite film matrix intended for tissue engineering. Materials 12, 1874 (2019). https://doi.org/10.3390/ma12111874

    Article  CAS  Google Scholar 

  35. Patel, M., Schwendemann, D., Spigno, G., Geng, S., Berglund, L., Oksman, K.: Functional nanocomposite films of poly(lactic acid) with well-dispersed chitin nanocrystals achieved using a dispersing agent and liquid-assisted extrusion process. Molecules 26, 4557 (2021). https://doi.org/10.3390/molecules26154557

    Article  CAS  Google Scholar 

  36. Carsi, M., Sanchis, M.J., Gómez, C.M., Rodriguez, S., Torres, F.G.: Effect of chitin whiskers on the molecular dynamics of carrageenan-based nanocomposites. Polymers 11, 1083 (2019). https://doi.org/10.3390/polym11061083

    Article  CAS  Google Scholar 

  37. Joseph, B., Sam, R.M., Balakrishnan, P., Maria, H.J., Gopi, S., Volova, T., Fernandes, S.C.M., Thomas, S.: Extraction of nanochitin from marine resources and fabrication of polymer nanocomposites: recent advances. Polymers 12, 1664 (2020). https://doi.org/10.3390/polym12081664

  38. Bharathi, D., Rajamani, R., Sibuh, B.Z., Pandit, S., Agrawal, S., Mishra, N., Sahni, M., Thakur, V.K., Gupta, P.K.: Biogenic preparation, characterization, and biomedical applications of chitosan functionalized iron oxide nanocomposite. J. Compos. Sci. 6, 120 (2022). https://doi.org/10.3390/jcs6050120

    Article  CAS  Google Scholar 

  39. Salari, M., Sowti Khiabani, M., Rezaei Mokarram, R., Ghanbarzadeh, B., Samadi Kafil, H.: Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids 84, 414–423 (2018). https://doi.org/10.1016/j.foodhyd.2018.05.037

    Article  CAS  Google Scholar 

  40. Irastorza, A., Zarandona, I., Andonegi, M., Guerrero, P., de la Caba, K.: The versatility of collagen and chitosan: from food to biomedical applications. Food Hydrocolloids 116, 106633 (2021). https://doi.org/10.1016/j.foodhyd.2021.106633

    Article  CAS  Google Scholar 

  41. Zahra, H., Sawada, D., Kumagai, S., Ogawa, Y., Johansson, L.S., Ge, Y., Guizani, C., Yoshioka, T., Hummel, M.: Evolution of carbon nanostructure during pyrolysis of homogeneous chitosan-cellulose composite fibers. Carbon 185, 27–38 (2021). https://doi.org/10.1016/j.carbon.2021.08.062

    Article  CAS  Google Scholar 

  42. Mujtaba, M., Fernández-Marín, R., Robles, E., Labidi, J., Yilmaz, B.A., Nefzi, H.: Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films. Carbohydr. Polym. 271, 118424 (2021). https://doi.org/10.1016/j.carbpol.2021.118424

    Article  CAS  Google Scholar 

  43. Jamróz, E., Janik, M., Juszczak, L., Kruk, T., Kulawik, P., Szuwarzyński, M., Kawecka, A., Khachatryan, K.: Composite biopolymer films based on a polyelectrolyte complex of furcellaran and chitosan. Carbohydr. Polym. 274, 118627 (2021). https://doi.org/10.1016/j.carbpol.2021.118627

    Article  CAS  Google Scholar 

  44. Kleszcz, K., Hebda, M., Kyzioł, A., Krawiec, H., Kyzioł, K.: Towards prevention of biofilm formation: Ti6Al7Nb modified with nanocomposite layers of chitosan and Ag/Au nanoparticles. Appl. Surf. Sci. 557, 149795 (2021). https://doi.org/10.1016/j.apsusc.2021.149795

    Article  CAS  Google Scholar 

  45. Kaneko, K., Miyaji, E.N., Gonçalves, V.M., Ferreira, D.M., Solórzano, C., MacLoughlin, R., Saleem, I.: Evaluation of polymer choice on immunogenicity of chitosan coated PLGA NPs with surface-adsorbed pneumococcal protein antigen PspA4Pro. Int. J. Pharm. 599, 120407 (2021). https://doi.org/10.1016/j.ijpharm.2021.120407

    Article  CAS  Google Scholar 

  46. Rafie, M., Meshkini, A.: Tailoring the proliferation of fibroblast cells by multiresponsive and thermosensitive stem cells composite F127 hydrogel containing folic acid. MgO:ZnO/chitosan hybrid microparticles for skin regeneration. Eur. J. Pharm. Sci. 167, 106031 (2021). https://doi.org/10.1016/j.ejps.2021.106031

  47. Liang, Q., Sun, X., Raza, H., Aslam Khan, M., Ma, H., Ren, X.: Fabrication and characterization of quercetin loaded casein phosphopeptides-chitosan composite nanoparticles by ultrasound treatment: Factor optimization, formation mechanism, physicochemical stability and antioxidant activity. Ultrason. Sonoc. 80, 105830 (2021). https://doi.org/10.1016/j.ultsonch.2021.105830

    Article  CAS  Google Scholar 

  48. Khoerunnisa, F., Nurhayati, M., Annisa, N.A.A., Fatimah, S., Nashrah, N., Hendrawan, H., Ko, Y.-G., Ng, E.-P., Opaprakasit, P.: Effects of benzalkonium chloride contents on structures, properties, and ultrafiltration performances of chitosan-based nanocomposite membranes. Membranes 12, 268 (2022). https://doi.org/10.3390/membranes12030268

    Article  CAS  Google Scholar 

  49. Li, H., Ji, H., Cui, X., Che, X., Zhang, Q., Zhong, J., Jin, R., Wang, L., Luo, Y.: Kinetics, thermodynamics, and equilibrium of As(III), Cd(II), Cu(II) and Pb(II) adsorption using porous chitosan bead-supported MnFe2O4 nanoparticles. Int. J. Min. Sci. Technol. 31, 1107–1115 (2021). https://doi.org/10.1016/j.ijmst.2021.10.004

    Article  CAS  Google Scholar 

  50. Olajire, A.A., Bamigbade, L.A.: Green synthesis of chitosan-based iron@silver nanocomposite as adsorbent for wastewater treatment. Water Resour. Ind. 26, 100158 (2021). https://doi.org/10.1016/j.wri.2021.100158

    Article  CAS  Google Scholar 

  51. Salzano de Luna, M., Sirignano, M.: Upcycling soot particles into chitosan-based aerogels for water purification from organic pollutants. J. Hazard. Mater. Lett. 2, 100019 (2021). https://doi.org/10.1016/j.hazl.2021.100019

  52. Cheng, Y., Morovvati, M.R., Huang, M., Shahali, M., Saber-Samandari, S., Niazi Angili, S., Ghadiri Nejad, M., Shakibaie, M., Toghraie, D.: A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application. J. Mater. Res. Technol. 14, 1761–1777 (2021). https://doi.org/10.1016/j.jmrt.2021.07.052

    Article  CAS  Google Scholar 

  53. Abadehie, F.S., Dehkordi, A.H., Zafari, M., Bagheri, M., Yousefiasl, S., Pourmotabed, S., Mahmoodnia, L., Validi, M., Ashrafizadeh, M., Zare, E.N., Rabiee, N., Makvandi, P., Sharifi, E.: Lawsone-encapsulated chitosan/polyethylene oxide nanofibrous mat as a potential antibacterial biobased wound dressing. Eng. Regeneration 2, 219–226 (2021). https://doi.org/10.1016/j.engreg.2022.01.001

    Article  Google Scholar 

  54. Mishra, D., Khare, P., Singh, D.K., Yadav, V., Luqman, S., Kumar, P.V.A., Shanker, K.: Synthesis of Ocimum extract encapsulated cellulose nanofiber/chitosan composite for improved antioxidant and antibacterial activities. Carbohydr. Polym. Technol. Appl. 2, 100152 (2021). https://doi.org/10.1016/j.carpta.2021.100152

    Article  CAS  Google Scholar 

  55. Lin, Y.H., Lin, J.H., Hong, Y.S.: Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 105, 81–90 (2017). https://doi.org/10.1002/jbm.b.33394

  56. Elabbasy, M.T., Abd El-Kader, M.F.H., Ismail, A.M., Menazea, A.A.: Regulating the function of bismuth (III) oxide nanoparticles scattered in chitosan/poly (vinyl pyrrolidone) by laser ablation on electrical conductivity characterization and antimicrobial activity. J. Mater. Res. Technol. 10, 1348–1354 (2021). https://doi.org/10.1016/j.jmrt.2020.12.109

  57. Kumar, R., Duhan, J.S., Manuja, A., Kaur, P., Kumar, B., Sadh, P.K.: Toxicity assessment and control of early blight and stem rot of Solanum tuberosum L. by mancozeb-loaded chitosan–gum acacia nanocomposites. J. Xenobiot. 12, 74–90 (2022). https://doi.org/10.3390/jox12020008

  58. Rodrigues, M.Á.V., Horn, M.M., Martins, V.C.A., Plepis, A.M.G.: Single-wall carbon nanotubes-chitosan nanocomposites: surface wettability, mechanical and thermal properties. Materwiss Werksttech. 52, 400–408 (2021). https://doi.org/10.1002/mawe.202000300

    Article  CAS  Google Scholar 

  59. Fernandes, S.C.M., Freire, C.S.R., Silvestre, A.J.D., Pascoal Neto, C., Gandini, A.: Novel materials based on chitosan and cellulose. Polym. Int. 60, 875-882 (2011). https://doi.org/10.1002/pi.3024

  60. Kang, Y., Kim, H.J., Lee, S.H., Noh, H.: Paper-based substrate for a surface-enhanced Raman spectroscopy biosensing platform—a silver/chitosan nanocomposite approach. Biosensors 12, 266 (2022). https://doi.org/10.3390/bios12050266

    Article  CAS  Google Scholar 

  61. Stoleru, E., Dumitriu, R.P., Ailiesei, G.-L., Yilmaz, C., Brebu, M.: Synthesis of bioactive materials by in situ one-step direct loading of Syzygium aromaticum essential oil into chitosan-based hydrogels. Gels 8, 225 (2022). https://doi.org/10.3390/gels8040225

    Article  CAS  Google Scholar 

  62. Jafari, H., Atlasi, Z., Mahdavinia, G.R., Hadifar, S., Sabzi, M.: Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Mater. Sci. Eng. C. 124, 112042 (2021). https://doi.org/10.1016/j.msec.2021.112042

    Article  CAS  Google Scholar 

  63. Banivaheb, S., Dan, S., Hashemipour, H., Kalantari, M.: Synthesis of modified chitosan TiO2 and SiO2 hydrogel nanocomposites for cadmium removal. J. Saudi Chem. Soc. 25, 101283 (2021). https://doi.org/10.1016/j.jscs.2021.101283

    Article  CAS  Google Scholar 

  64. Ohemeng-Boahen, G., Sewu, D.D., Tran, H.N., Woo, S.H.: Enhanced adsorption of congo red from aqueous solution using chitosan/hematite nanocomposite hydrogel capsule fabricated via anionic surfactant gelation. Colloid. Surf. A. 625, 126911 (2021). https://doi.org/10.1016/j.colsurfa.2021.126911

    Article  CAS  Google Scholar 

  65. Marapureddy, S.G., Hivare, P., Sharma, A., Chakraborty, J., Ghosh, S., Gupta, S., Thareja, P.: Rheology and direct write printing of chitosan—graphene oxide nanocomposite hydrogels for differentiation of neuroblastoma cells. Carbohydr. Polym. 269, 118254 (2021). https://doi.org/10.1016/j.carbpol.2021.118254

    Article  CAS  Google Scholar 

  66. Jayaramudu, T., Varaprasad, K., Reddy, K.K., Pyarasani, R.D., Akbari-Fakhrabadi, A., Amalraj, J.: Chitosan-pluronic based Cu nanocomposite hydrogels for prototype antimicrobial applications. Int. J. Biol. Macromol. 143, 825–832 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.143

    Article  CAS  Google Scholar 

  67. Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Salimi Bani, M., Hajizadeh, Z., Asgharnasl, S.: A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 140, 407–414 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.031

    Article  CAS  Google Scholar 

  68. Mittal, H., Al Alili, A., Morajkar, P.P., Alhassan, S.M.: GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose—a versatile adsorbent for the treatment of dyes contaminated wastewater. Int. J. Biol. Macromol. 167, 1248–1261 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.079

    Article  CAS  Google Scholar 

  69. Danish, E.Y., Bakhsh, E.M., Akhtar, K.: Design of chitosan nanocomposite hydrogel for sensitive detection and removal of organic pollutants. Int. J. Biol. Macromol. 159, 276–286 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.036

    Article  CAS  Google Scholar 

  70. Kaur, K., Jindal, R.: Comparative study on the behaviour of chitosan-gelatin based hydrogel and nanocomposite ion exchanger synthesized under microwave conditions towards photocatalytic removal of cationic dyes. Carbohydr. Polym. 207, 398–410 (2019). https://doi.org/10.1016/j.carbpol.2018.12.002

    Article  CAS  Google Scholar 

  71. Caldas Dos Santos, T., Hernández, R., Rescignano, N., Boff, L., Reginatto, F.H., Simões, C.M.O., de Campos, A.M., Mijangos, C.: Nanocomposite chitosan hydrogels based on PLGA nanoparticles as potential biomedical materials. Eur. Polym. J. 99, 456–463 (2018). https://doi.org/10.1016/j.eurpolymj.2017.12.039

  72. Li, S.N., Li, B., Yu, Z.R., Gong, L.X., Xia, Q.Q., Feng, Y., Jia, D., Zhou, Y., Tang, L.C.: Chitosan in-situ grafted magnetite nanoparticles toward mechanically robust and electrically conductive ionic-covalent nanocomposite hydrogels with sensitive strain-responsive resistance. Compos. Sci. Technol. 195, 108173 (2020). https://doi.org/10.1016/j.compscitech.2020.108173

    Article  CAS  Google Scholar 

  73. Popescu, I., Constantin, M., Pelin, I.M., Suflet, D.M., Ichim, D.L., Daraba, O.M., Fundueanu, G.: Eco-friendly synthesized PVA/chitosan/oxalic acid nanocomposite hydrogels embedding silver nanoparticles as antibacterial materials. Gels 8, 268 (2022). https://doi.org/10.3390/gels8050268

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Oyervides-Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oyervides-Muñoz, E., Oyervides-Muñoz, M.A., Garcia-Lobato, M.A. (2023). Chitin and Chitosan Nanocomposites: From the Synthesis to the Application. In: Avalos Belmontes, F., González, F.J., López-Manchado, M.Á. (eds) Green-Based Nanocomposite Materials and Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-18428-4_6

Download citation

Publish with us

Policies and ethics