Skip to main content

Biology of Ceramic Bone Substitutes

  • Chapter
  • First Online:
  • 223 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The human skeleton has the miraculous capacity of healing itself when needed through a cascade known as bone remodeling. However, bone tissue is not able to regenerate itself in case of a broad variety of defects. In these cases, bone substitution is necessary to enable and support the process of bone remodeling. The gold standard for the regeneration of critical-sized bone defects is the transplantation of patient's own bone tissue harvested from another body region. This harvested bone tissue is called an autograft. Due to its donor site morbidity and limited availability, the use of bone tissue harvested from another individual (allografts) or from another species (xenograft) or synthetic materials that are chemically and structurally mimicking to native bone tissue (alloplastic grafts) has been established. This book chapter covers the physiological phenomenon of bone tissue remodeling and the different bone substitute materials (BSMs). The chapter also sheds a light on tissue responses to biomaterials, as well as inflammation in physiological bone tissue healing and inflammation induced by implanted BSMs. Inflammation generally has a negative connotation, but this chapter intends to elaborate on inflammation as an inherent and important process in bone tissue healing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Giannoudis, P.V., Dinopoulos, H., Tsiridis, E.: Bone substitutes: an update. Injury 36(Suppl), S20–S27 (2005). https://doi.org/10.1016/j.injury.2005.07.029

    Article  Google Scholar 

  2. Goldberg, V.M., Akhavan, S.: Biology of bone grafts. In: Friedlaender, J.R., G.E. (eds.) Bone Regeneration and Repair; Liebermann, SpringerLink (2005)

    Google Scholar 

  3. Bauer, T.W., Muschler, G.F.: Bone graft materials. An overview of the basic science. Clin. Orthop. Relat. Res. 10–27 (2000)

    Google Scholar 

  4. Pape, H.C., Evans, A., Kobbe, P.: Autologous bone graft: properties and techniques. J Orthop Trauma 24(Suppl), S36-40 (2010). https://doi.org/10.1097/BOT.0b013e3181cec4a1

    Article  Google Scholar 

  5. Khan, S.N., Cammisa F.P.J., Sandhu, H.S., Diwan, A.D., Girardi, F.P., Lane, J.M.: The biology of bone grafting. J. Am. Acad. Orthop. Surg. 13, 77–86 (2005)

    Google Scholar 

  6. Le, B.Q., Nurcombe, V., Cool, S.M., van Blitterswijk, C.A., de Boer, J., LaPointe, V.L.S.: The components of bone and what they can teach us about regeneration. Mater. 11 (2017). https://doi.org/10.3390/ma11010014

  7. Miron, R.J., Bosshardt, D.D.: OsteoMacs: key players around bone biomaterials. Biomaterials 82, 1–19 (2016). https://doi.org/10.1016/j.biomaterials.2015.12.017

    Article  CAS  Google Scholar 

  8. Arrington, E.D., Smith, W.J., Chambers, H.G., Bucknell, A.L., Davino, N.A.: Complications of iliac crest bone graft harvesting. Clin. Orthop. Relat. Res. 300–309 (1996). https://doi.org/10.1097/00003086-199608000-00037

  9. Nkenke, E., Weisbach, V., Winckler, E., Kessler, P., Schultze-, S., Wiltfang, J., Neukam, F.W.: Morbidity of harvesting of bone grafts from the iliac crest for preprosthetic augmentation procedures: a prospective study. Int. J. Oral Maxillofac. Surg. 33, 157–163 (2004). https://doi.org/10.1054/ijom.2003.0465

    Article  CAS  Google Scholar 

  10. Schaaf, H., Lendeckel, S., Howaldt, H.P., Streckbein, P.: Donor site morbidity after bone harvesting from the anterior iliac crest. Oral. Surg. Oral. Med. Oral. Pathol Oral. Radiol. Endod. 109, 52–58 (2010). https://doi.org/10.1016/j.tripleo.2009.08.023

    Article  Google Scholar 

  11. Klijn, R.J., Meijer, G.J., Bronkhorst, E.M., Jansen, J.A.: Sinus floor augmentation surgery using autologous bone grafts from various donor sites: a meta-analysis of the total bone volume. Tissue Eng. Part B Rev. 16, 295–303 (2010). https://doi.org/10.1089/ten.TEB.2009.0558

    Article  Google Scholar 

  12. Raghoebar, G.M., Louwerse, C., Kalk, W.W., Vissink, A.: Morbidity of chin bone harvesting. Clin. Oral. Implant. Res. 12, 503–507 (2001). https://doi.org/10.1034/j.1600-0501.2001.120511.x

    Article  CAS  Google Scholar 

  13. Raghoebar, G.M., Meijndert, L., Kalk, W.W., Vissink, A.: Morbidity of mandibular bone harvesting: a comparative study. Int. J. Oral. Maxillofac. Implant. 22, 359–365 (2007)

    Google Scholar 

  14. Dimitriou, R., Mataliotakis, G.I., Angoules, A.G., Kanakaris, N.K., Giannoudis, P.: V Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl), S3-15 (2011). https://doi.org/10.1016/j.injury.2011.06.015

    Article  Google Scholar 

  15. Zhang, W.B., Zheng, L.W., Chua, D., Cheung, L.K.: Bone regeneration after radiotherapy in an animal model. J. Oral. Maxillofac. Surg. 68, 2802–2809 (2010). https://doi.org/10.1016/j.joms.2010.04.024

    Article  Google Scholar 

  16. Tarantino, U., Cerocchi, I., Scialdoni, A., Saturnino, L., Feola, M., Celi, M., Liuni, F.M., Iolascon, G., Gasbarra, E.: Bone healing and osteoporosis. Aging. Clin. Exp. Res. 23, 62–64 (2011)

    CAS  Google Scholar 

  17. Henriksen, K., Bollerslev, J., Everts, V., Karsdal, M.A.: Osteoclast activity and subtypes as a function of physiology and pathology–implications for future treatments of osteoporosis. Endocr. Rev. 32, 31–63 (2011). https://doi.org/10.1210/er.2010-0006

    Article  CAS  Google Scholar 

  18. Ginaldi, L., Di Benedetto, M.C., De Martinis, M.: Osteoporosis, inflammation and ageing. Immun. Ageing. 2, 14 (2005). https://doi.org/10.1186/1742-4933-2-14

    Article  Google Scholar 

  19. Al-Sayyad, M.J., Abdulmajeed, T.M.: Fracture of the anterior iliac crest following autogenous bone grafting. Saudi. Med. J. 27, 254–258 (2006)

    Google Scholar 

  20. Hu, R., Hearn, T., Yang, J.: Bone graft harvest site as a determinant of iliac crest strength. Clin. Orthop. Relat. Res. 252–256 (1995)

    Google Scholar 

  21. Miron, R.J., Bosshardt, D.D.: Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs. Xenografts DFDBA. 668–675 (2015). https://doi.org/10.1111/clr.12647

  22. Stewart, S., Bryant, S.J., Ahn, J., Hankenson, K.D.: Bone regeneration. In: Translational Regenerative Medicine. Elsevier Inc.; pp. 313–333. ISBN: 9780124103962

    Google Scholar 

  23. Roberts, T.T., Rosenbaum, A.J., Roberts, T.T., Rosenbaum, A.J., Roberts, T.T., Rosenbaum, A.J.: Healing bone grafts, bone substitutes and orthobiologics the bridge between basic science and clinical advancements in fracture healing. 6278 (2012). https://doi.org/10.4161/org.23306

  24. Pryor, L.S., Gage, E., Langevin, C.J., Herrera, F., Breithaupt, A.D., Gordon, C.R., Afifi, A.M., Zins, J.E., Meltzer, H., Gosman, A., et al.: Review of bone substitutes. Craniomaxillofac. Trauma. Reconstr. 2, 151–160 (2009). https://doi.org/10.1055/s-0029-1224777

    Article  Google Scholar 

  25. Kao, S.T., Scott, D.D.: A review of bone substitutes. Oral. Maxillofac. Surg. Clin. North Am. 19(vi), 513–521 (2007). https://doi.org/10.1016/j.coms.2007.06.002

  26. Anderson, J.M., Rodriguez, A., Chang, D.T.: Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008). https://doi.org/10.1016/j.smim.2007.11.004

    Article  CAS  Google Scholar 

  27. Mountziaris, P.M., Mikos, A.G.: Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng. Part B Rev. 14, 179–186 (2008). https://doi.org/10.1089/ten.teb.2008.0038

    Article  CAS  Google Scholar 

  28. Muldashev, E.R., Muslimov, S.A., Musina, L.A., Nigmatullin, R.T., Lebedeva, A.I., Shangina, O.R., Khasanov, R.A.: The role of macrophages in the tissues regeneration stimulated by the biomaterials. Cell Tissue Bank 6, 99–107 (2005). https://doi.org/10.1007/s10561-004-5805-2

    Article  CAS  Google Scholar 

  29. Sheikh, Z., Brooks, P.J., Barzilay, O., Fine, N., Glogauer, M.: Macrophages, foreign body giant cells and their response to implantable biomaterials. Mater 8, 5671–5701 (2015). https://doi.org/10.3390/ma8095269

    Article  CAS  Google Scholar 

  30. Xia, Z., Triffitt, J.T.: A review on macrophage responses to biomaterials. Biomed. Mater. 1, R1-9 (2006). https://doi.org/10.1088/1748-6041/1/1/r01

    Article  CAS  Google Scholar 

  31. Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., Locati, M.: Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185 (2013). https://doi.org/10.1002/path.4133

    Article  CAS  Google Scholar 

  32. Forbes, S.J., Rosenthal, N.: Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med. 20, 857–869 (2014). https://doi.org/10.1038/nm.3653

    Article  CAS  Google Scholar 

  33. Chazaud, B.: Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 219, 172–178 (2014). https://doi.org/10.1016/j.imbio.2013.09.001

    Article  CAS  Google Scholar 

  34. Kačarević, Ž.P., Rider, P.M., Alkildani, S., Retnasingh, S., Smeets, R., Jung, O., Ivanišević, Z., Barbeck, M.: An introduction to 3D bioprinting: Possibilities, challenges and future aspects. Materials (Basel) 11 (2018). https://doi.org/10.3390/ma11112199

  35. Barbeck, M., Najman, S., Stojanovic, S., Mitic, Z., Zivkovic, J.M., Choukroun, J., Kovacevic, P., Sader, R., Kirkpatrick, C.J., Ghanaati, S.: Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization. Biomed. Mater. 10, 55007 (2015). https://doi.org/10.1088/1748-6041/10/5/055007

    Article  CAS  Google Scholar 

  36. Peric Kacarevic, Z., Kavehei, F., Houshmand, A., Franke, J., Smeets, R., Rimashevskiy, D., Wenisch, S., Schnettler, R., Jung, O., Barbeck, M.: Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration. Int. J. Artif. Organs, 391398818771530 (2018). https://doi.org/10.1177/0391398818771530

  37. Hsiong, S.X., Mooney, D.J.: Regeneration of vascularized bone. Periodontol 41, 109–122 (2000 2006). https://doi.org/10.1111/j.1600-0757.2006.00158.x

  38. Bingle, L., Lewis, C.E., Corke, K.P., Reed, M.W., Brown, N.J.: Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br. J. Cancer 94, 101–107 (2006). https://doi.org/10.1038/sj.bjc.6602901

    Article  CAS  Google Scholar 

  39. Anderson, J.M.: Multinucleated giant cells 40–47

    Google Scholar 

  40. Brodbeck, W.G., Anderson, J.M.: Giant cell formation and function. Curr. Opin. Hematol. 16, 53–57 (2009). https://doi.org/10.1097/MOH.0b013e32831ac52e

    Article  Google Scholar 

  41. Miron, R.J., Bosshardt, D.D.: Multinucleated Giant cells: good guys or bad guys? Tissue Eng. Part B Rev. 24, 53–65 (2018). https://doi.org/10.1089/ten.TEB.2017.0242

    Article  Google Scholar 

  42. Barbeck, M., Motta, A., Migliaresi, C., Sader, R., Kirkpatrick, C.J., Ghanaati, S.: Heterogeneity of biomaterial-induced multinucleated giant cells: possible importance for the regeneration process? J. Biomed. Mater. Res. - Part A 104, 413–418 (2016). https://doi.org/10.1002/jbm.a.35579

    Article  CAS  Google Scholar 

  43. Miron, R.J., Zohdi, H., Fujioka-Kobayashi, M., Bosshardt, D.D.: Giant cells around bone biomaterials: osteoclasts or multi-nucleated giant cells? Acta Biomater 46, 15–28 (2016). https://doi.org/10.1016/j.actbio.2016.09.029

    Article  CAS  Google Scholar 

  44. Ghanaati, S., Barbeck, M., Orth, C., Willershausen, I., Thimm, B.W., Hoffmann, C., Rasic, A., Sader, R.A., Unger, R.E., Peters, F., et al.: Influence of beta-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater 6, 4476–4487 (2010). https://doi.org/10.1016/j.actbio.2010.07.006

    Article  CAS  Google Scholar 

  45. Barbeck, M., Dard, M., Kokkinopoulou, M., Markl, J., Booms, P., Sader, R.A., Kirkpatrick, C.J., Ghanaati, S.: Small-sized granules of biphasic bone substitutes support fast implant bed vascularization. Biomatter 5, e1056943 (2015). https://doi.org/10.1080/21592535.2015.1056943

    Article  CAS  Google Scholar 

  46. Wissing, T.B., Bonito, V., van Haaften, E.E., van Doeselaar, M., Brugmans, M., Janssen, H.M., Bouten, C.V.C., Smits, A.: Macrophage-driven biomaterial degradation depends on scaffold microarchitecture. Front Bioeng. Biotechnol. 7, 87 (2019). https://doi.org/10.3389/fbioe.2019.00087

    Article  Google Scholar 

  47. Goldberg, V.M., Stevenson, S.: Bone graft options: fact and fancy. Orthopedics 17, 809–810,821 (1994)

    Google Scholar 

  48. Gilbert, T.W., Sellaro, T.L., Badylak, S.F.: Decellularization of tissues and organs. Biomaterials 27, 3675–3683 (2006). https://doi.org/10.1016/j.biomaterials.2006.02.014

    Article  CAS  Google Scholar 

  49. Somuncu, O.S.: Decellularization concept in regenerative medicine. Adv. Exp. Med. Biol. (2019). https://doi.org/10.1007/5584_2019_338

    Article  Google Scholar 

  50. Hofmann, G.O., Kirschner, M.H., Wangemann, T., Falk, C., Mempel, W., Hammer, C.: Infections and immunological hazards of allogeneic bone transplantation. Arch. Orthop. Trauma. Surg. 114, 159–166 (1995). https://doi.org/10.1007/bf00443390

    Article  CAS  Google Scholar 

  51. Weyts, F.A., Bos, P.K., Dinjens, W.N., van Doorn, W.J., van Biezen, F.C., Weinans, H., Verhaar, J.A.: Living cells in 1 of 2 frozen femoral heads. Acta. Orthop. Scand. 74, 661–664 (2003). https://doi.org/10.1080/00016470310018162

    Article  Google Scholar 

  52. Lorenz, J., Schlee, M., Al-, S., Chia, P., Sader, R.A., Ghanaati, S.: Variant purification of an allogeneic bone block. Acta. Stomatol. Croat. 51, 141–147 (2017). https://doi.org/10.15644/asc51/2/7

    Article  Google Scholar 

  53. Baldini, N., De Sanctis, M., Ferrari, M.: Deproteinized bovine bone in periodontal and implant surgery. Dent. Mater. 27, 61–70 (2011). https://doi.org/10.1016/j.dental.2010.10.017

    Article  CAS  Google Scholar 

  54. Wong, M.L., Griffiths, L.G.: Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater 10, 1806–1816 (2014). https://doi.org/10.1016/j.actbio.2014.01.028

  55. Badylak, S.F.: Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12, 367–377 (2004). https://doi.org/10.1016/j.trim.2003.12.016

    Article  CAS  Google Scholar 

  56. Barbeck, M., Udeabor, S., Lorenz, J., Schlee, M., Holthaus, M.G., Raetscho, N., Choukroun, J., Sader, R., Kirkpatrick, C.J., Ghanaati, S.: High-temperature sintering of xenogeneic bone substitutes leads to increased multinucleated giant cell formation: in vivo and preliminary clinical results. J. Oral. Implant. 41, e212–e222 (2015). https://doi.org/10.1563/aaid-joi-D-14-00168

  57. Barbeck, M., Witte, F., Wenisch, S., Schnettler, R.: Xenogeneic bone grafting materials. Implants, 34–36 (2017)

    Google Scholar 

  58. Kolk, A., Handschel, J., Drescher, W., Rothamel, D., Kloss, F., Blessmann, M., Heiland, M., Wolff, K.D., Smeets, R.: Current trends and future perspectives of bone substitute materials—from space holders to innovative biomaterials. J. Craniomaxillofac. Surg. 40, 706–718 (2012). https://doi.org/10.1016/j.jcms.2012.01.002

    Article  Google Scholar 

  59. Hermann, J.S., Buser, D.: Guided bone regeneration for dental implants. Curr. Opin. Periodontol 3, 168–177 (1996)

    CAS  Google Scholar 

  60. Felício-Fernandes, G., Laranjeira, M.C.M.: Calcium phosphate biomaterials from marine algae Hydrothermal synthesis and characterisation. Quim. Nova. 23, 441–446 (2000)

    Article  Google Scholar 

  61. Damien, E., Revell, P.A.: Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J. Appl. Biomater Biomech. 2, 65–73 (2004)

    CAS  Google Scholar 

  62. Lu, L., Bradford, L., Yaszemski, M.J.: Synthetic bone substitutes: current opinion in orthopaedics. Curr. Opin. Orthop. 11, 383–390 (2000)

    Article  Google Scholar 

  63. Eppley, B.L., Pietrzak, W.S., Blanton, M.W.: Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J. Craniofac. Surg. 16, 981–989 (2005). https://doi.org/10.1097/01.scs.0000179662.38172.dd

    Article  Google Scholar 

  64. Horowitz, R.A., Mazor, Z., Foitzik, C., Prasad, H., Rohrer, M., Palti, A.: β-tricalcium phosphate as bone substitute material: properties and clinical applications. J. Osseointegration, 2 (2010). https://www.journalofosseointegration.eu/index.php/jo/article/view/65

  65. Ghanaati, S., Barbeck, M., Detsch, R., Deisinger, U., Hilbig, U., Rausch, V., Sader, R., Unger, R.E., Ziegler, G., Kirkpatrick, C.J.: The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate cer. Biomed. Mater. 7 (2012). https://doi.org/10.1088/1748-6041/7/1/015005

  66. Bouler, J.M., Pilet, P., Gauthier, O., Verron, E.: Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater 53, 1–12 (2017). https://doi.org/10.1016/j.actbio.2017.01.076

    Article  CAS  Google Scholar 

  67. Hench, L.L.: The story of Bioglass. J. Mater. Sci. Mater Med. 17, 967–978 (2006). https://doi.org/10.1007/s10856-006-0432-z

    Article  CAS  Google Scholar 

  68. Jones, J.R.: Bioactive glasses, Woodhead Publishing Limited (1971)

    Google Scholar 

  69. Abbasi, Z., Bahrololoom, M.E., Shariat, M.H., Bagheri, R.: Bioactive glasses in dentistry: a review. J. Dent. Biomater. 2, 1–9 (2015)

    Google Scholar 

  70. Gerhardt, L.C., Widdows, K.L., Erol, M.M., Burch, C.W., Sanz-Herrera, J.A., Ochoa, I., Stampfli, R., Roqan, I.S., Gabe, S., Ansari, T., et al.: The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32, 4096–4108 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.032

    Article  CAS  Google Scholar 

  71. Ohura, K., Nakamura, T., Ebisawa, Y., Kokubo, T., Kotoura, Y., Oka, M.: Bioactivity of CaO·SiO2 glasses added with various ions | SpringerLink. J. Mater. Sci. Mater. Med. 3, 95–100 (1992). https://doi.org/10.1007/BF00705275

    Article  CAS  Google Scholar 

  72. Souza, M.T., Crovace, M.C., Schröder, C., Eckert, H., Peitl, O., Zanoto, E.D.: Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in Bioglass-derived glasses. J. Non. Cryst. Solids 382, 57–65 (2013)

    Article  CAS  Google Scholar 

  73. Glenske, K., Donkiewicz, P., Kowitsch, A., Milosevic-Oljaca, N., Rider, P., Rofall, S., Franke, J., Jung, O., Smeets, R., Schnettler, R., et al.: Applications of metals for bone regeneration. Int. J. Mol. Sci. 19 (2018). https://doi.org/10.3390/ijms19030826

  74. Asa’ad, F., Pagni, G., Pilipchuk, S.P., Gianni, A.B., Giannobile, W.V., Rasperini, G.: 3D-Printed scaffolds and biomaterials: review of alveolar bone augmentation and periodontal regeneration applications. Int. J. Dent. 2016 1239842 (2016). https://doi.org/10.1155/2016/1239842

  75. Rider, P., Kačarević, Ž.P., Alkildani, S., Retnasingh, S., Schnettler, R., Barbeck, M.: Additive manufacturing for guided bone regeneration: a perspective for alveolar ridge augmentation 19, ISBN 4930206073 (2018)

    Google Scholar 

  76. Dodziuk, H.: Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol 13, 283–293 (2016). https://doi.org/10.5114/kitp.2016.62625

    Article  Google Scholar 

  77. Ventola, C.L.: Medical applications for 3D printing: current and projected uses. P t 39, 704–711 (2014)

    Google Scholar 

  78. Rankin, T.M., Giovinco, N.A., Cucher, D.J., Watts, G., Hurwitz, B., Armstrong, D.G.: Three-dimensional printing surgical instruments: are we there yet? J. Surg. Res. 189, 193–197 (2014). https://doi.org/10.1016/j.jss.2014.02.020

    Article  Google Scholar 

  79. Bose, S., Vahabzadeh, S., Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16, 496–504 (2013)

    Article  CAS  Google Scholar 

  80. Klammert, U., Gbureck, U., Vorndran, E., Rodiger, J., Meyer-, P., Kubler, A.C.: 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J. Craniomaxillofac Surg. 38, 565–570 (2010). https://doi.org/10.1016/j.jcms.2010.01.009

    Article  Google Scholar 

  81. Jariwala, S.H., Lewis, G.S., Bushman, Z.J., Adair, J.H., Donahue, H.J.: 3D Printing of personalized artificial bone scaffolds. 3D Print Addit. Manuf. 2, 56–64 (2015). https://doi.org/10.1089/3dp.2015.0001

  82. Perić, Ž, Rider, P., Alkildani, S., Retnasingh, S., Pejakić, M., Schnettler, R., Gosau, M., Smeets, R., Jung, O., Barbeck, M.: An introduction to bone tissue engineering. Int. J. Artif. Organs 43, 69–86 (2020). https://doi.org/10.1177/0391398819876286

    Article  Google Scholar 

  83. Konta, A.A., Garcia-Pina, M., Serrano, D.R.: Personalised 3D printed medicines: which techniques and polymers are more successful? Bioeng. 4 (2017). https://doi.org/10.3390/bioengineering4040079

  84. Jin, F.L., Hu, R.R., Park, S.J.: Improvement of thermal behaviors of biodegradable poly (lactic acid) polymer. Compos. Part B Eng. 164, 287–296 (2018)

    Article  Google Scholar 

  85. Hamad, K., Kaseem, M., Yang, H.W., Deri, F., Ko, Y.G.: Properties and medical applications of polylactic acid: a review. eXPRESS Polym. Lett. 9, 435–455 (2015) https://doi.org/10.3144/expresspolymlett.2015.42

  86. Venkatesan, J., Kim, S.K.: Nano-hydroxyapatite composite biomaterials for bone tissue engineering–a review. J. Biomed. Nanotechnol. 10, 3124–3140 (2014). https://doi.org/10.1166/jbn.2014.1893

    Article  CAS  Google Scholar 

  87. Rasal, R.M., Janorkar, A.V., Hirt, D.E.: Poly(lactic acid) modifications. Prog. Polym. Sci. 35, 338–356 (2010). https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  88. Rao, M.G., Bharathi, P., Akila, R.M.: A comprehensive review on biopolymers. Sci. Rev. Chem. Commun. 4(2), 61–68 (2014)

    Google Scholar 

  89. Ricard-blum, S.: The collagen family. Cold Spring Harb Perspect Biol. 1–19 (2011). https://doi.org/10.1101/cshperspect.a004978

  90. Neiders, M.E., Andreana, S., Noble, B.: Collagen as an implantable material in medicine and dentistry. J. Oral Implantol. XXVIII (2002)

    Google Scholar 

  91. Lynn, A.K., Yannas, I.V., Bonfield, W.: Antigenicity and immunogenicity of collagen. J. Biomed. Res. 343–354 (2004). https://doi.org/10.1002/jbm.b.30096

  92. Delmas, S.V.Æ.P.G.Æ.P.D.: The role of collagen in bone strength, 319–336 (2006). https://doi.org/10.1007/s00198-005-2035-9

  93. Parenteau-, R., Gauvin, R., Berthod, F.: Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 3, 1863–1887 (2010). https://doi.org/10.3390/ma3031863

    Article  CAS  Google Scholar 

  94. Rebelo, R., Fernandes, M., Fangueiro, R.: Biopolymers in medical implants: a brief review. Procedia Eng. 200, 236–243 (2017)

    Article  CAS  Google Scholar 

  95. Ghanaati, S., Unger, R.E., Webber, M.J., Barbeck, M., Orth, C., Kirkpatrick, J.A., Booms, P., Motta, A., Migliaresi, C., Sader, R.A., et al.: Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials 32, 8150–8160 (2011). https://doi.org/10.1016/j.biomaterials.2011.07.041

    Article  CAS  Google Scholar 

  96. Kundu, B., Rajkhowa, R., Kundu, S.C., Wang, X.: Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65, 457–470 (2013). https://doi.org/10.1016/j.addr.2012.09.043

    Article  CAS  Google Scholar 

  97. Barbeck, M., Booms, P., Unger, R., Hoffmann, V., Sader, R., Kirkpatrick, C.J., Ghanaati, S.: Multinucleated giant cells in the implant bed of bone substitutes are foreign body giant cells-New insights into the material-mediated healing process. J. Biomed. Mater. Res. A 105, 1105–1111 (2017). https://doi.org/10.1002/jbm.a.36006

    Article  CAS  Google Scholar 

  98. Nair, L.S., Laurencin, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  99. Santana, R.B., Miller, C.: Human intrabony defect regeneration with rhFGF-2 and hyaluronic acid—a randomized controlled clinical trial. Front. Bioeng. Biotechnol. 2 (2015). https://doi.org/10.1111/jcpe.12406

  100. Lee, S.Y., Park, Y., Hwang, S.J.: Effect of bFGF and fibroblasts combined with hyaluronic acid-based hydrogels on soft tissue augmentation : an experimental study in rats. Maxillofac. Plast. Reconstr. Surg. 0 (2019)

    Google Scholar 

  101. Hickey, R.J., Pelling, A.E.: Cellulose biomaterials for. Tissue Eng. 7, 1–15 (2019). https://doi.org/10.3389/fbioe.2019.00045

    Article  Google Scholar 

  102. Miyamoto, T., Takahashi, S., Ito, H., Inagaki, H., Noishiki, Y.: Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23, 125–133 (1989). https://doi.org/10.1002/jbm.820230110

    Article  CAS  Google Scholar 

  103. Yan, H., Jing, W., Fei, Y., Yingnan, S., Xiaoling, Z., Kerong, D.: Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Mater. Sci. Eng. C (2017). https://doi.org/10.1016/j.msec.2017.02.174

    Article  Google Scholar 

  104. Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K., Kim, S.: Alginate composites for bone tissue engineering: a review. Int. J. Biol. Macromol. (2014). https://doi.org/10.1016/j.ijbiomac.2014.07.008

    Article  Google Scholar 

  105. Hu, W.J., Eaton, J.W., Ugarova, T.P., Tang, L.: Molecular basis of biomaterial-mediated foreign body reactions. Blood 98, 1231–1238 (2001). https://doi.org/10.1182/blood.v98.4.1231

    Article  CAS  Google Scholar 

  106. Andrew, J.G., Andrew, S.M., Freemont, A.J., Marsh, D.R.: Inflammatory cells in normal human fracture healing. Acta. Orthop. Scand. 65, 462–466 (1994). https://doi.org/10.3109/17453679408995493

    Article  CAS  Google Scholar 

  107. Kalfas, I.H.: Principles of bone healing. Neurosurg. Focus. 10, E1 (2001). https://doi.org/10.3171/foc.2001.10.4.2

    Article  CAS  Google Scholar 

  108. Phillips, A.M.: Overview of the fracture healing cascade. Injury 36(Suppl), S5-7 (2005). https://doi.org/10.1016/j.injury.2005.07.027

    Article  Google Scholar 

  109. Little, N., Rogers, B., Flannery, M.: Bone formation, remodelling and healing. Surg 29, 141–145 (2011). https://doi.org/10.1016/j.mpsur.2011.01.002

    Article  Google Scholar 

  110. Schmidt-Bleek, K., Schell, H., Schulz, N., Hoff, P., Perka, C., Buttgereit, F., Volk, H.D., Lienau, J., Duda, G.N.: Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. 347, 567–573 (2012). https://doi.org/10.1007/s00441-011-1205-7

    Article  CAS  Google Scholar 

  111. Kolar, P., Schmidt-Bleek, K., Schell, H., Gaber, T., Toben, D., Schmidmaier, G., Perka, C., Buttgereit, F., Duda, G.N.: The early fracture hematoma and its potential role in fracture healing. Tissue Eng. Part B Rev. 16, 427–434 (2010). https://doi.org/10.1089/ten.TEB.2009.0687

    Article  Google Scholar 

  112. Bolander, M.E.: Regulation of fracture repair by growth factors. Proc. Soc. Exp. Biol. Med. 200, 165–170 (1992). https://doi.org/10.3181/00379727-200-43410a

    Article  CAS  Google Scholar 

  113. Vauhkonen, M., Peltonen, J., Karaharju, E., Aalto, K., Alitalo, I.: Collagen synthesis and mineralization in the early phase of distraction bone healing. Bone Min. 10, 171–181 (1990). https://doi.org/10.1016/0169-6009(90)90260-m

    Article  CAS  Google Scholar 

  114. Schlundt, C., El Khassawna, T., Serra, A., Dienelt, A., Wendler, S., Schell, H., van Rooijen, N., Radbruch, A., Lucius, R., Hartmann, S., et al.: Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 106, 78–89 (2018). https://doi.org/10.1016/j.bone.2015.10.019

    Article  CAS  Google Scholar 

  115. Remedios, A.: Bone and bone healing. Vet. Clin. North Am. Small. Anim. Pr. 29, 1029–1044 (1999). https://doi.org/10.1016/s0195-5616(99)50101-0

  116. Wu, A.C., Raggatt, L.J., Alexander, K.A., Pettit, A.R.: Unraveling macrophage contributions to bone repair. Bonekey Rep 2, 373 (2013). https://doi.org/10.1038/bonekey.2013.107

    Article  CAS  Google Scholar 

  117. Novosel, E.C., Kleinhans, C., Kluger, P.J.: Vascularization is the key challenge in tissue engineering. Adv. Drug. Deliv. Rev. 63, 300–311 (2011). https://doi.org/10.1016/j.addr.2011.03.004

    Article  CAS  Google Scholar 

  118. Almubarak, S., Nethercott, H., Freeberg, M., Beaudon, C., Jha, A., Jackson, W., Marcucio, R., Miclau, T., Healy, K., Bahney, C.: Tissue engineering strategies for promoting vascularized bone regeneration. Bone 83, 197–209 (2016). https://doi.org/10.1016/j.bone.2015.11.011

    Article  CAS  Google Scholar 

  119. Krishnan, L., Willett, N.J., Guldberg, R.E.: Vascularization strategies for bone regeneration. Ann. Biomed. Eng. 42, 432–444 (2014). https://doi.org/10.1007/s10439-014-0969-9

    Article  Google Scholar 

  120. Carano, R.A., Filvaroff, E.H.: Angiogenesis and bone repair. Drug. Discov. Today. 8, 980–989 (2003). https://doi.org/10.1016/s1359-6446(03)02866-6

    Article  CAS  Google Scholar 

  121. Keramaris, N.C., Calori, G.M., Nikolaou, V.S., Schemitsch, E.H., Giannoudis, P.: V Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39(Suppl), S45-57 (2008). https://doi.org/10.1016/s0020-1383(08)70015-9

    Article  Google Scholar 

  122. Anderson, J.M.: Mechanisms of inflammation and infection with implanted devices. Cardiovasc. Pathol. 2, 33–41 (1993)

    Article  Google Scholar 

  123. Ghanaati, S., Orth, C., Barbeck, M., Willershausen, I., Thimm, B.W., Booms, P., Stubinger, S., Landes, C., Sader, R.A., Kirkpatrick, C.J.: Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats. Biomed. Mater. 5, 35005 (2010). https://doi.org/10.1088/1748-6041/5/3/035005

    Article  CAS  Google Scholar 

  124. Ghanaati, S., Barbeck, M., Hilbig, U., Hoffmann, C., Unger, R.E., Sader, R.A., Peters, F., Kirkpatrick, C.J.: An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Acta Biomater. 7, 4018–4028 (2011). https://doi.org/10.1016/j.actbio.2011.07.003

    Article  CAS  Google Scholar 

  125. Schaefer, S., Detsch, R., Uhl, F., Deisinger, U., Ziegler, G.: How degradation of calcium phosphate bone substitute materials is influenced by phase composition and porosity—Schaefer—2011—advanced engineering materials—Wiley online library. Adv. Eng. Mater. 13, 342–350 (2011). https://doi.org/10.1002/adem.201000267

    Article  CAS  Google Scholar 

  126. Hing, K.A.: Bioceramic bone graft substitutes: influence of porosity and chemistry—hing—international journal of applied ceramic technology—wiley online library. Appl. Ceram. Technol. 2005(2), 84–199 (2005). https://doi.org/10.1111/j.1744-7402.2005.02020.x

    Article  Google Scholar 

  127. Barbeck, M., Hoffmann, C., Sader, R., Peters, F., Hubner, W.D., Kirkpatrick, C.J., Ghanaati, S.: Injectable bone substitute based on beta-TCP combined with a hyaluronan-containing hydrogel contributes to regeneration of a critical bone size defect towards restitutio ad integrum. J. Oral. Implant. 42, 127–137 (2016). https://doi.org/10.1563/aaid-joi-D-14-00203

    Article  Google Scholar 

  128. Lorenz, J., Barbeck, M., Kirkpatrick, C.J., Sader, R., Lerner, H., Ghanaati, S.: Injectable bone substitute material on the basis of beta-TCP and hyaluronan achieves complete bone regeneration while undergoing nearly complete degradation. Int. J. Oral. Maxillofac Implant. 33, 636–644 (2018). https://doi.org/10.11607/jomi.6026

    Article  Google Scholar 

  129. Sieger, D., Korzinskas, T., Jung, O., Stojanovic, S.; Wenisch, S.; Smeets, R.; Gosau, M.; Schnettler, R., Najman, S., Barbeck, M.: The addition of high doses of hyaluronic acid to a biphasic bone substitute decreases the proinflammatory tissue response. Int. J. Mol. Sci. 20, (2019). https://doi.org/10.3390/ijms20081969

  130. Detsch, R., Schaefer, S., Deisinger, U., Ziegler, G., Seitz, H., Leukers, B.: In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J. Biomater. Appl. 26, 359–380 (2011). https://doi.org/10.1177/0885328210373285

    Article  CAS  Google Scholar 

  131. Basle, M.F., Chappard, D., Grizon, F., Filmon, R., Delecrin, J., Daculsi, G., Rebel, A.: Osteoclastic resorption of Ca-P biomaterials implanted in rabbit bone. Calcif Tissue Int 53, 348–356 (1993). https://doi.org/10.1007/bf01351842

    Article  CAS  Google Scholar 

  132. Luttikhuizen, D.T., Harmsen, M.C., Van Luyn, M.J.: Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 12, 1955–1970 (2006). https://doi.org/10.1089/ten.2006.12.1955

    Article  CAS  Google Scholar 

  133. Ghanaati, S., Orth, C., Unger, R.E., Barbeck, M., Webber, M.J., Motta, A., Migliaresi, C., James Kirkpatrick, C.: Fine-tuning scaffolds for tissue regeneration: effects of formic acid processing on tissue reaction to silk fibroin. J. Tissue. Eng. Regen. Med. 4, 464–472 (2010). https://doi.org/10.1002/term.257

    Article  CAS  Google Scholar 

  134. Shen, Y., Redmond, S.L., Papadimitriou, J.M., Teh, B.M., Yan, S., Wang, Y., Atlas, M.D., Marano, R.J., Zheng, M., Dilley, R.J.: The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomed. Mater. 9, 15015 (2014). https://doi.org/10.1088/1748-6041/9/1/015015

    Article  CAS  Google Scholar 

  135. Stoppato, M., Stevens, H.Y., Carletti, E., Migliaresi, C., Motta, A., Guldberg, R.E.: Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds. Biomaterials 34, 4573–4581 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.009

    Article  CAS  Google Scholar 

  136. van Wachem, P.B., van Luyn, M.J., Nieuwenhuis, P., Koerten, H.K., Olde, L., Ten Hoopen, H., Feijen, J.: In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy. Biomaterials 12, 215–223 (1991). https://doi.org/10.1016/0142-9612(91)90203-m

    Article  Google Scholar 

  137. Ziats, N.P., Miller, K.M., Anderson, J.M.: In vitro and in vivo interactions of cells with biomaterials. Biomaterials 9, 5–13 (1988). https://doi.org/10.1016/0142-9612(88)90063-4

    Article  CAS  Google Scholar 

  138. Hernandez-Pando, R., Bornstein, Q.L., Aguilar Leon, D., Orozco, E.H., Madrigal, V.K., Martinez Cordero, E.: Inflammatory cytokine production by immunological and foreign body multinucleated giant cells. Immunology 100, 352–358 (2000). https://doi.org/10.1046/j.1365-2567.2000.00025.x

    Article  CAS  Google Scholar 

  139. Luttikhuizen, D.T., Dankers, P.Y., Harmsen, M.C., van Luyn, M.J.: Material dependent differences in inflammatory gene expression by giant cells during the foreign body reaction. J. Biomed. Mater Res. A 83, 879–886 (2007). https://doi.org/10.1002/jbm.a.31420

    Article  CAS  Google Scholar 

  140. Barbeck, M., Peric-Kacarevic, Z., Kavehei, F., Rider, P., Najman, S., Stojanovic, S., Rimashevskiy D., Wenisch, S., Schnettler, R.: The effect of temperature treatment of xenogeneic bone substitute on the tissue response–a mini review. Acta. Medica Median. 58, 113–137 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Barbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barbeck, M., Alkildani, S., Jung, O. (2023). Biology of Ceramic Bone Substitutes. In: Najman, S., et al. Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-17269-4_2

Download citation

Publish with us

Policies and ethics