Skip to main content

An Accurate Unsupervised Liver Lesion Detection Method Using Pseudo-lesions

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

Anomaly detection using an unsupervised learning scheme has become a challenging research topic. Unsupervised learning requires only unlabeled normal data for training and can detect anomalies in unseen testing data. In this paper, we propose an unsupervised liver lesion detection framework based on generative adversarial networks. We present a new perspective that learning anomalies positively affect learning normal objects (e.g., liver), even if the anomalies are fake. Our framework uses only normal and pseudo-lesions data for training, and the pseudo-lesions data comes from normal data augmentation. We train our framework to predict normal features by transferring normal and augmented data into each other. In addition, we introduce a discriminator network containing a U-Net-like architecture that extracts local and global features effectively for providing more informative feedback to the generator. Further, we also propose a novel reconstruction-error score index based on the image gradient perception pyramid. A higher error-index score indicates a lower similarity between input and output images, which means lesions detected. We conduct extensive experiments on different datasets for liver lesion detection. Our proposed method outperforms other state-of-the-art unsupervised anomaly detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660

  2. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  3. Xu, Y., et al.: PA-ResSeg: a phase attention residual network for liver tumor segmentation from multiphase CT images. Med. Phys. 48(7), 3752–3766 (2021)

    Article  Google Scholar 

  4. Zhang, Y., et al.: DeepRecS: from RECIST diameters to precise liver tumor segmentation. IEEE J. Biomed. Health Inform. 26(2), 614–625 (2021)

    Google Scholar 

  5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Ben-Cohen, A., Klang, E., Kerpel, A., Konen, E., Amitai, M.M., Greenspan, H.: Fully convolutional network and sparsity-based dictionary learning for liver lesion detection in CT examinations. Neurocomputing 275, 1585–1594 (2018)

    Article  Google Scholar 

  8. Yan, K., et al.: MULAN: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 194–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_22

    Chapter  Google Scholar 

  9. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  10. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  11. Akçay, S., Atapour-Abarghouei, A., Breckon, T.P.: Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  13. Li, H., et al.: A weakly-supervised anomaly detection method via adversarial training for medical images. In: 2022 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–4. IEEE (2022)

    Google Scholar 

  14. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  17. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  18. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  19. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  21. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). arXiv preprint arXiv:1901.04056 (2019)

  22. Huang, H., et al.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2020, pp. 1055–1059. IEEE (2020)

    Google Scholar 

  23. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  24. You, S., Tezcan, K.C., Chen, X., Konukoglu, E.: Unsupervised lesion detection via image restoration with a normative prior. In: International Conference on Medical Imaging with Deep Learning, pp. 540–556. PMLR (2019)

    Google Scholar 

  25. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14372–14381 (2020)

    Google Scholar 

  26. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Profs. Ikuko Nishikawa and Gang Xu of Ritsumeikan University, Japan for their advice on this research. This work was supported in part by the Grant in Aid for Scientific Research from the Japanese Ministry for Education, Science, Culture and Sports (MEXT) under the Grant Nos. 20KK0234, 21H03470, and 20K21821, and in part by the Natural Science Foundation of Zhejiang Province (LZ22F020012), in part by Major Scientific Research Project of Zhejiang Lab (2020ND8AD01), and in part by the National Natural Science Foundation of China (82071988), the Key Research and Development Program of Zhejiang Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanfen Lin or Yen-Wei Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 191 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Iwamoto, Y., Han, X., Lin, L., Hu, H., Chen, YW. (2022). An Accurate Unsupervised Liver Lesion Detection Method Using Pseudo-lesions. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics