Skip to main content

Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics

  • Chapter
  • First Online:
  • 396 Accesses

Abstract

Stimuli-responsive nanomaterials have received lots of attention in biomedical research due to their responsiveness to different therapies under various conditions. However, several researchers have been involved in developing stimuli-responsive nanomaterials that showed a high response to external physical stimuli (light, temperature, ultrasound, magnetic field, electrical field, pH, etc.). These nanomaterials have shown considerable promise in delivering bioactive medicines in a regulated and targeted manner. Several studies are being conducted related to programming these stimuli-responsive nanomaterials to investigate sufficient pharmacologic reactions; however, this research area has not been comprehensively examined. This chapter aims to summarize and synthesize the research on various design methodologies for programmable physical stimuli-responsive nanotherapeutics at both basic and advanced levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Hoare T, Young S, Lawlor MW, Kohane DS. Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater. 2012a;8(10):3596–605.

    Article  CAS  Google Scholar 

  • Bhuchar N, Sunasee R, Ishihara K, Thundat T, Narain R. Degradable thermoresponsive nanogels for protein encapsulation and controlled release. Bioconjug Chem. 2012;23(1):75–83.

    Article  CAS  Google Scholar 

  • Du J-Z, Sun T-M, Song W-J, Wu J, Wang J. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew Chem Int Ed. 2010;49(21):3621–6.

    Article  CAS  Google Scholar 

  • Gil ES, Wu L, Xu L, Lowe TL. β-Cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood–brain barrier. Biomacromolecules. 2012;13(11):3533–41.

    Article  CAS  Google Scholar 

  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  Google Scholar 

  • Hua M-Y, Liu H-L, Yang H-W, Chen P-Y, Tsai R-Y, Huang C-Y, Tseng IC, Lyu L-A, Ma C-C, Tang H-J, Yen T-C, Wei K-C. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials. 2011;32(2):516–27.

    Article  CAS  Google Scholar 

  • Poß M, Tower RJ, Napp J, Appold LC, Lammers T, Alves F, Glüer C-C, Boretius S, Feldmann C. Multimodal [GdO]+[ICG]− nanoparticles for optical, photoacoustic, and magnetic resonance imaging. Chem Mater. 2017;29(8):3547–54.

    Article  Google Scholar 

  • Landon CD, Park JY, Needham D, Dewhirst MW. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Nanomed J. 2011;3:38–64.

    Google Scholar 

  • Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12.

    Article  Google Scholar 

  • Colombo M, Staufenbiel S, Rühl E, Bodmeier R. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application. Int J Pharm. 2017;521(1):156–66.

    Article  CAS  Google Scholar 

  • Xuan J, Boissière O, Zhao Y, Yan B, Tremblay L, Lacelle S, Xia H, Zhao Y. Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir. 2012;28(47):16463–8.

    Article  CAS  Google Scholar 

  • Sahle FF, Metz H, Wohlrab J, Neubert RHH. Polyglycerol fatty acid ester surfactant–based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterisation, in vitro release and penetration investigation. Eur J Pharm Biopharm. 2012;82(1):139–50.

    Article  CAS  Google Scholar 

  • Sahle FF, Giulbudagian M, Bergueiro J, Lademann J, Calderón M. Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale. 2017;9(1):172–82.

    Article  CAS  Google Scholar 

  • Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6(1):555.

    Article  Google Scholar 

  • Chen W, Ouyang J, Liu H, Chen M, Zeng K, Sheng J, Liu Z, Han Y, Wang L, Li J, Deng L, Liu Y-N, Guo S. Black phosphorus Nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv Mater. 2017;29(5):1603864.

    Article  Google Scholar 

  • Zhang P, Ye J, Liu E, Sun L, Zhang J, Lee S-J, Gong J, He H, Yang VC. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Front Chem Sci Eng. 2017a;11(4):529–36.

    Article  CAS  Google Scholar 

  • Stejskalová A, Kiani MT, Almquist BD. Programmable biomaterials for dynamic and responsive drug delivery. Exp Biol Med (Maywood). 2016;241(10):1127–37.

    Article  Google Scholar 

  • Li J, Fan C, Pei H, Shi J, Huang Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv Mater. 2013;25(32):4386–96.

    Article  CAS  Google Scholar 

  • Bukhari SNA. Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials. Pharmaceutics. 2022;14(4):866.

    Article  CAS  Google Scholar 

  • Rahikkala A, Aseyev V, Tenhu H, Kauppinen EI, Raula J. Thermoresponsive nanoparticles of self-assembled block copolymers as potential carriers for drug delivery and diagnostics. Biomacromolecules. 2015;16(9):2750–6.

    Article  CAS  Google Scholar 

  • Lutz J-F, Akdemir Ö, Hoth A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc. 2006;128(40):13046–7.

    Article  CAS  Google Scholar 

  • Gandhi A, Paul A, Sen SO, Sen KK. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci. 2015;10(2):99–107.

    Article  Google Scholar 

  • Rejinold NS, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr Polym. 2011;83(2):776–86.

    Article  CAS  Google Scholar 

  • Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials. 2005;26(16):3055–64.

    Article  CAS  Google Scholar 

  • Diehl C, Schlaad H. Thermo-responsive polyoxazolines with widely tuneable LCST. Macromol Biosci. 2009;9(2):157–61.

    Article  CAS  Google Scholar 

  • Kurzhals S, Gal N, Zirbs R, Reimhult E. Controlled aggregation and cell uptake of thermoresponsive polyoxazoline-grafted superparamagnetic iron oxide nanoparticles. Nanoscale. 2017;9(8):2793–805.

    Article  CAS  Google Scholar 

  • Pánek J, Filippov SK, Hrubý M, Rabyk M, Bogomolova A, Kučka J, Štěpánek P. Thermoresponsive nanoparticles based on poly(2-alkyl-2-Oxazolines) and Pluronic F127. Macromol Rapid Commun. 2012;33(19):1683–9.

    Article  Google Scholar 

  • Viegas TX, Bentley MD, Harris JM, Fang Z, Yoon K, Dizman B, Weimer R, Mero A, Pasut G, Veronese FM. Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug Chem. 2011;22(5):976–86.

    Article  CAS  Google Scholar 

  • Ulbricht J, Jordan R, Luxenhofer R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials. 2014;35(17):4848–61.

    Article  CAS  Google Scholar 

  • Mansfield EDH, Sillence K, Hole P, Williams AC, Khutoryanskiy VV. POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers. Nanoscale. 2015;7(32):13671–9.

    Article  CAS  Google Scholar 

  • Wang N, Guan Y, Yang L, Jia L, Wei X, Liu H, Guo C. Magnetic nanoparticles (MNPs) covalently coated by PEO–PPO–PEO block copolymer for drug delivery. J Colloid Interface Sci. 2013;395:50–7.

    Article  CAS  Google Scholar 

  • Chen S, Li Y, Guo C, Wang J, Ma J, Liang X, Yang L-R, Liu H-Z. Temperature-responsive magnetite/PEO−PPO−PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir. 2007;23(25):12669–76.

    Article  CAS  Google Scholar 

  • Tian Y, Bian S, Yang W. A redox-labile poly(oligo(ethylene glycol)methacrylate)-based nanogel with tunable thermosensitivity for drug delivery. Polym Chem. 2016;7(10):1913–21.

    Article  CAS  Google Scholar 

  • Sicilia G, Grainger-Boultby C, Francini N, Magnusson JP, Saeed AO, Fernández-Trillo F, Spain SG, Alexander C. Programmable polymer-DNA hydrogels with dual input and multiscale responses. Biomater Sci. 2014;2(2):203–11.

    Article  CAS  Google Scholar 

  • Bessa PC, Machado R, Nürnberger S, Dopler D, Banerjee A, Cunha AM, Rodríguez-Cabello JC, Redl H, van Griensven M, Reis RL, Casal M. Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J Control Release. 2010;142(3):312–8.

    Article  CAS  Google Scholar 

  • Kowalczyk T, Hnatuszko-Konka K, Gerszberg A, Kononowicz AK. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J Microbiol Biotechnol. 2014;30(8):2141–52.

    Article  CAS  Google Scholar 

  • Kracke B, Cole JT, Kaiser CJO, Hellenkamp B, Krysiak S, Ghoorchian A, Braun GB, Holland NB, Hugel T. Thermoswitchable nanoparticles based on elastin-like polypeptides. Macromolecules. 2015;48(16):5868–77.

    Article  CAS  Google Scholar 

  • Kim YS, Gulfam M, Lowe TL. Thermoresponsive-co-biodegradable linear–dendritic nanoparticles for sustained release of nerve growth factor to promote neurite outgrowth. Mol Pharm. 2018;15(4):1467–75.

    Article  CAS  Google Scholar 

  • Kim YS, Gil ES, Lowe TL. Synthesis and characterization of thermoresponsive-co-biodegradable linear−dendritic copolymers. Macromolecules. 2006;39(23):7805–11.

    Article  CAS  Google Scholar 

  • Wang G, Nie Q, Zang C, Zhang B, Zhu Q, Luo G, Wang S. Self-assembled thermoresponsive Nanogels prepared by reverse micelle → positive micelle method for ophthalmic delivery of muscone, a poorly water-soluble drug. J Pharm Sci. 2016a;105(9):2752–9.

    Article  CAS  Google Scholar 

  • Wu X, Ge W, Shao T, Wu W, Hou J, Cui L, Wang J, Zhang Z. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630. Int J Nanomedicine. 2017;12:1475–83.

    Article  CAS  Google Scholar 

  • Meng X, Liu J, Yu X, Li J, Lu X, Shen T. Pluronic F127 and D-α-tocopheryl polyethylene glycol succinate (TPGS) mixed micelles for targeting drug delivery across the blood brain barrier. Sci Rep. 2017;7(1):2964.

    Article  Google Scholar 

  • Han H, Lee JY, Lu X. Thermoresponsive nanoparticles + plasmonic nanoparticles = photoresponsive heterodimers: facile synthesis and sunlight-induced reversible clustering. Chem Commun. 2013;49(55):6122–4.

    Article  CAS  Google Scholar 

  • Kim D-H, Vitol EA, Liu J, Balasubramanian S, Gosztola DJ, Cohen EE, Novosad V, Rozhkova EA. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir. 2013;29(24):7425–32.

    Article  CAS  Google Scholar 

  • Dicheva BM, ten Hagen TLM, Schipper D, Seynhaeve ALB, van Rhoon GC, Eggermont AMM, Koning GA. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes. J Control Release. 2014;195:37–48.

    Article  CAS  Google Scholar 

  • Sanyal S, Huang HC, Rege K, Dai LL. Thermo-responsive core-shell composite nanoparticles synthesized via one-step Pickering emulsion polymerization for controlled drug delivery. J Nanomed Nanotechnol. 2011;2:1–7.

    Google Scholar 

  • I. Yildiz, B. Sizirici Yildiz, Applications of thermoresponsive magnetic nanoparticles, journal of nanomaterials 2015 (2015).

    Google Scholar 

  • Dionigi C, Lungaro L, Goranov V, Riminucci A, Piñeiro-Redondo Y, Bañobre-López M, Rivas J, Dediu V. Smart magnetic poly(N-isopropylacrylamide) to control the release of bio-active molecules. J Mater Sci Mater Med. 2014;25(10):2365–71.

    Article  CAS  Google Scholar 

  • Yassine O, Zaher A, Li EQ, Alfadhel A, Perez JE, Kavaldzhiev M, Contreras MF, Thoroddsen ST, Khashab NM, Kosel J. Highly efficient thermoresponsive nanocomposite for controlled release applications. Sci Rep. 2016;6(1):28539.

    Article  Google Scholar 

  • Cunliffe D, C. de las Heras Alarcón, Peters V, Smith JR, Alexander C. Thermoresponsive surface-grafted poly(N−isopropylacrylamide) copolymers: effect of phase transitions on protein and bacterial attachment. Langmuir. 2003;19(7):2888–99.

    Article  CAS  Google Scholar 

  • Nykänen A, Rahikkala A, Hirvonen S-P, Aseyev V, Tenhu H, Mezzenga R, Raula J, Kauppinen E, Ruokolainen J. Thermally sensitive block copolymer particles prepared via aerosol flow reactor method: morphological characterization and behavior in water. Macromolecules. 2012;45(20):8401–11.

    Article  Google Scholar 

  • Schwarz M, Buehler A, Aguirre J, Ntziachristos V. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J Biophotonics. 2016;9(1–2):55–60.

    Article  CAS  Google Scholar 

  • Lin YJ, Huang CC, Wan WL, Chiang CH, Chang Y, Sung HW. Recent advances in CO(2) bubble-generating carrier systems for localized controlled release. Biomaterials. 2017;133:154–64.

    Article  CAS  Google Scholar 

  • A. Rahikkala, Self-assembly of block and graft copolymers in aerosol nanoparticles, (2015).

    Google Scholar 

  • Hoare T, Sivakumaran D, Stefanescu CF, Lawlor MW, Kohane DS. Nanogel scavengers for drugs: local anesthetic uptake by thermoresponsive nanogels. Acta Biomater. 2012b;8(4):1450–8.

    Article  CAS  Google Scholar 

  • Liang X, Fan J, Zhao Y, Cheng M, Wang X, Jin R, Sun T. A targeted drug delivery system based on folic acid-functionalized upconversion luminescent nanoparticles. J Biomater Appl. 2017;31(9):1247–56.

    Article  CAS  Google Scholar 

  • Huang X, Misra GP, Vaish A, Flanagan JM, Sutermaster B, Lowe TL. Novel nanogels with both thermoresponsive and hydrolytically degradable properties. Macromolecules. 2008;41(22):8339–45.

    Article  CAS  Google Scholar 

  • Cubero E, Luque FJ, Orozco M. Theoretical study of the Hoogsteen–Watson-Crick Junctions in DNA. Biophys J. 2006;90(3):1000–8.

    Article  CAS  Google Scholar 

  • Lanier LA, Bermudez H. DNA nanostructures: a shift from assembly to applications. Curr Opin Chem Eng. 2015;7:93–100.

    Article  Google Scholar 

  • Samanta A, Medintz IL. Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale. 2016;8(17):9037–95.

    Article  CAS  Google Scholar 

  • Jiang X, Liu S, Narain R. Degradable thermoresponsive core cross-linked micelles: fabrication, surface functionalization, and biorecognition. Langmuir. 2009;25(23):13344–50.

    Article  CAS  Google Scholar 

  • Aguirre G, Ramos J, Forcada J. Synthesis of new enzymatically degradable thermo-responsive nanogels. Soft Matter. 2013;9(1):261–70.

    Article  CAS  Google Scholar 

  • Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today. 2018;23(5):992–1006.

    Article  CAS  Google Scholar 

  • Chen K-J, Liang H-F, Chen H-L, Wang Y, Cheng P-Y, Liu H-L, Xia Y, Sung H-W. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano. 2013;7(1):438–46.

    Article  CAS  Google Scholar 

  • Al-Ahmady ZS, Al-Jamal WT, Bossche JV, Bui TT, Drake AF, Mason AJ, Kostarelos K. Lipid–peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano. 2012;6(10):9335–46.

    Article  CAS  Google Scholar 

  • Zhou H, Gan X, Liu T, Yang Q, Li G. Electrochemical study of photovoltaic effect of nano titanium dioxide on hemoglobin. Bioelectrochemistry. 2006;69(1):34–40.

    Article  CAS  Google Scholar 

  • Xiao Z, Ji C, Shi J, Pridgen EM, Frieder J, Wu J, Farokhzad OC. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed. 2012;51(47):11853–7.

    Article  CAS  Google Scholar 

  • Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev. 2012;64(11):1005–20.

    Article  CAS  Google Scholar 

  • Patnaik S, Sharma AK, Garg BS, Gandhi RP, Gupta KC. Photoregulation of drug release in azo-dextran nanogels. Int J Pharm. 2007;342(1):184–93.

    Article  CAS  Google Scholar 

  • Zhao Y. Light-responsive block copolymer micelles. Macromolecules. 2012;45(9):3647–57.

    Article  CAS  Google Scholar 

  • Zhang C, Zhang J, Shi G, Song H, Shi S, Zhang X, Huang P, Wang Z, Wang W, Wang C, Kong D, Li C. A light responsive nanoparticle-based delivery system using Pheophorbide a graft polyethylenimine for dendritic cell-based cancer immunotherapy. Mol Pharm. 2017b;14(5):1760–70.

    Article  CAS  Google Scholar 

  • Azagarsamy MA, Alge DL, Radhakrishnan SJ, Tibbitt MW, Anseth KS. Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules. 2012;13(8):2219–24.

    Article  CAS  Google Scholar 

  • Huu VAN, Luo J, Zhu J, Zhu J, Patel S, Boone A, Mahmoud E, McFearin C, Olejniczak J, de Gracia Lux C, Lux J, Fomina N, Huynh M, Zhang K, Almutairi A. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J Control Release. 2015;200:71–7.

    Article  CAS  Google Scholar 

  • He D, He X, Wang K, Cao J, Zhao Y. A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles. Langmuir. 2012;28(8):4003–8.

    Article  CAS  Google Scholar 

  • Itoh H, Tahara A, Naka K, Chujo Y. Photochemical assembly of gold nanoparticles utilizing the photodimerization of thymine. Langmuir. 2004;20(5):1972–6.

    Article  CAS  Google Scholar 

  • Wang T, Jiang H, Wan L, Zhao Q, Jiang T, Wang B, Wang S. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 2015;13:354–63.

    Article  CAS  Google Scholar 

  • Alibolandi M, Taghdisi SM, Ramezani P, Hosseini Shamili F, Farzad SA, Abnous K, Ramezani M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm. 2017;519(1):352–64.

    Article  CAS  Google Scholar 

  • Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–501.

    Article  CAS  Google Scholar 

  • You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, Nick AM, Sood AK, Li C. Effective photothermal chemotherapy using doxorubicin-loaded gold Nanospheres that target EphB4 receptors in Tumors. Cancer Res. 2012;72(18):4777–86.

    Article  CAS  Google Scholar 

  • Chuang E-Y, Lin C-C, Chen K-J, Wan D-H, Lin K-J, Ho Y-C, Lin P-Y, Sung H-W. A FRET-guided, NIR-responsive bubble-generating liposomal system for in vivo targeted therapy with spatially and temporally precise controlled release. Biomaterials. 2016;93:48–59.

    Article  CAS  Google Scholar 

  • Lee SM, Park H, Choi JW, Park YN, Yun CO, Yoo KH. Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew Chem Int Ed Engl. 2011;50(33):7581–6.

    Article  CAS  Google Scholar 

  • Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev. 2014;72:3–14.

    Article  CAS  Google Scholar 

  • Lee JY, Carugo D, Crake C, Owen J, de Saint Victor M, Seth A, Coussios C, Stride E. Nanoparticle-loaded protein–polymer nanodroplets for improved stability and conversion efficiency in ultrasound imaging and drug delivery. Adv Mater. 2015;27(37):5484–92.

    Article  CAS  Google Scholar 

  • Yildirim T, Yildirim I, Yañez-Macias R, Stumpf S, Fritzsche C, Hoeppener S, Guerrero-Sanchez C, Schubert S, Schubert US. Dual pH and ultrasound responsive nanoparticles with pH triggered surface charge-conversional properties. Polym Chem. 2017;8(8):1328–40.

    Article  CAS  Google Scholar 

  • Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 2015;9(11):11023–33.

    Article  CAS  Google Scholar 

  • Jo H, Ban C. Aptamer–nanoparticle complexes as powerful diagnostic and therapeutic tools. Exp Mol Med. 2016;48(5):e230.

    Article  CAS  Google Scholar 

  • Xie X, Lin W, Liu H, Deng J, Chen Y, Liu H, Fu X, Yang Y. Ultrasound-responsive nanobubbles contained with peptide–camptothecin conjugates for targeted drug delivery. Drug Deliv. 2016;23(8):2756–64.

    Article  CAS  Google Scholar 

  • Xin Y, Qi Q, Mao Z, Zhan X. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: in vitro and in vivo investigations. Int J Pharm. 2017;528(1):47–54.

    Article  CAS  Google Scholar 

  • Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine. 2013;8:1621–33.

    Google Scholar 

  • Paris JL, de la Torre P, Victoria Cabañas M, Manzano M, Grau M, Flores AI, Vallet-Regí M. Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy. Nanoscale. 2017;9(17):5528–37.

    Article  CAS  Google Scholar 

  • Wang CH, Kang ST, Lee YH, Luo YL, Huang YF, Yeh CK. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials. 2012a;33(6):1939–47.

    Article  CAS  Google Scholar 

  • Wang C-H, Kang S-T, Lee Y-H, Luo Y-L, Huang Y-F, Yeh C-K. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials. 2012b;33(6):1939–47.

    Article  CAS  Google Scholar 

  • Ishijima A, Minamihata K, Yamaguchi S, Yamahira S, Ichikawa R, Kobayashi E, Iijima M, Shibasaki Y, Azuma T, Nagamune T, Sakuma I. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro. Sci Rep. 2017;7(1):44077.

    Article  CAS  Google Scholar 

  • Yang HW, Hua MY, Liu HL, Huang CY, Tsai RY, Lu YJ, Chen JY, Tang HJ, Hsien HY, Chang YS, Yen TC, Chen PY, Wei KC. Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials. 2011;32(27):6523–32.

    Article  CAS  Google Scholar 

  • McGill SL, Cuylear CL, Adolphi NL, Osinski M, Smyth HDC. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. IEEE Trans Nanobioscience. 2009;8(1):33–42.

    Article  Google Scholar 

  • Prijic S, Prosen L, Cemazar M, Scancar J, Romih R, Lavrencak J, Bregar VB, Coer A, Krzan M, Znidarsic A, Sersa G. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials. 2012;33(17):4379–91.

    Article  CAS  Google Scholar 

  • Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD. Mesoporous multifunctional upconversion luminescent and magnetic “Nanorattle” materials for targeted chemotherapy. Nano Lett. 2012;12(1):61–7.

    Article  CAS  Google Scholar 

  • Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, Gray JW, Chen FF. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics. 2014;4(9):872–92.

    Article  CAS  Google Scholar 

  • Huang H-Y, Hu S-H, Chian C-S, Chen S-Y, Lai H-Y, Chen Y-Y. Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo. J Mater Chem. 2012;22(17):8566–73.

    Article  CAS  Google Scholar 

  • Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Aoshima S. Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small. 2011;7(12):1683–9.

    Article  CAS  Google Scholar 

  • Ruiz-Hernández E, Baeza A, Vallet-Regí M. Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano. 2011;5(2):1259–66.

    Article  Google Scholar 

  • Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv Mater. 2009;21(13):1354–7.

    Article  CAS  Google Scholar 

  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.

    Article  CAS  Google Scholar 

  • Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R, Kantoff PW, Bander NH, Jon S, Farokhzad OC. Superparamagnetic iron oxide nanoparticle–aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem. 2008;3(9):1311–5.

    Article  CAS  Google Scholar 

  • Samanta D, Hosseini-Nassab N, Zare RN. Electroresponsive nanoparticles for drug delivery on demand. Nanoscale. 2016;8(17):9310–7.

    Article  CAS  Google Scholar 

  • Im JS, Bai BC, Lee Y-S. The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials. 2010;31(6):1414–9.

    Article  CAS  Google Scholar 

  • Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, Xu Z, Gao J, Du Y, Chen Z. Angiopep-conjugated electro-responsive hydrogel nanoparticles: therapeutic potential for epilepsy. Angew Chem Int Ed. 2014;53(46):12436–40.

    CAS  Google Scholar 

  • Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc. 2010;132(27):9268–70.

    Article  CAS  Google Scholar 

  • Wang Y, Ying X, Chen L, Liu Y, Wang Y, Liang J, Xu C, Guo Y, Wang S, Hu W, Du Y, Chen Z. Electroresponsive nanoparticles improve antiseizure effect of phenytoin in generalized tonic-clonic seizures. Neurotherapeutics. 2016b;13(3):603–13.

    Article  CAS  Google Scholar 

  • Kim JA, Lee WG. Role of weakly polarized nanoparticles in electroporation. Nanoscale. 2011;3(4):1526–32.

    Article  CAS  Google Scholar 

  • Wang S, Zhang X, Yu B, Lee RJ, Lee LJ. Targeted nanoparticles enhanced flow electroporation of antisense oligonucleotides in leukemia cells. Biosens Bioelectron. 2010;26(2):778–83.

    Article  CAS  Google Scholar 

  • Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN. Drug release from electric-field-responsive nanoparticles. ACS Nano. 2012;6(1):227–33.

    Article  CAS  Google Scholar 

  • Soni KS, Desale SS, Bronich TK. Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release. 2016;240:109–26.

    Article  CAS  Google Scholar 

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.

    Article  CAS  Google Scholar 

  • Yang J, Lee J, Kang J, Oh SJ, Ko H-J, Son J-H, Lee K, Suh J-S, Huh Y-M, Haam S. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater. 2009;21(43):4339–42.

    Article  CAS  Google Scholar 

  • Zardad A-Z, Choonara YE, Du Toit LC, Kumar P, Mabrouk M, Kondiah PPD, Pillay V. A review of thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polymers. 2016;8(10):359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pravin P. Upare or Byung Gyu Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upare, P.P., Shin, H.S., Lee, J.H., Park, B.G. (2023). Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics. In: Lim, KT., Abd-Elsalam, K.A. (eds) Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine. Springer, Cham. https://doi.org/10.1007/978-3-031-16084-4_9

Download citation

Publish with us

Policies and ethics