Skip to main content

On the Computational Properties of the Uncountability of the Real Numbers

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13468))

Abstract

The uncountability of the real numbers is one of their most basic properties, known (far) outside of mathematics. Cantor’s 1874 proof of the uncountability of the real numbers even appears in the very first paper on set theory, i.e. a historical milestone. Despite this famous status and history, the computational properties of the uncountability of the real numbers have not been studied much. In this paper, we study the following computational operation that witnesses that the real numbers not countable:

$$ on\; input\; a \;countable \;set\; of\; reals,\; output\; a\; real\; not\; in\; that\; set. $$

In particular, we formulate a considerable number of operations that are computationally equivalent to the centred operation, working in Kleene’s higher-order computability theory based on his S1-S9 computation schemes. Perhaps surprisingly, our equivalent operations involve most basic properties of the Riemann integral and Volterra’s early work circa 1881.

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) via the grant Reverse Mathematics beyond the Gödel hierarchy (SA3418/1-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The functional \(\textsf {S} _{k}^{2}\) from Sect. 1.3.2 can decide \(\Pi _{k}^{1}\)-formulas, but the centred operation is not computable in \(\textsf {S} _{k}^{2}\) (or their union). Kleene’s \(\exists ^{3}\) from Sect. 1.3.2 computes the centred operation, but the former also yields full second-order arithmetic..

  2. 2.

    If \(A_{n}\) were infinite, the Bolzano-Weierstrass theorem implies the existence of a limit point \(y\in [0,1]\) for \(A_{n}\). One readily shows that \(f(y+)\) or \(f(y-)\) does not exist, a contradiction as f is assumed to be regulated.

  3. 3.

    A point \(x\in [0,1]\) is a strict local maximum of \(f:[0,1]\rightarrow \mathbb {R}\) in case \((\exists N\in \mathbb {N})( \forall y \in B(x, \frac{1}{2^{N}}))(y\ne x\rightarrow f(y)<f(x))\).

  4. 4.

    If \(g\in C([0,1])\), then \(x\in [0,1]\) is a strict local maximum iff for some \(\epsilon \in \mathbb {Q}^{+}\):

    • \(g(y) < g(x)\) whenever \(|x-y] < \epsilon \) for any \(q\in [0,1]\cap \mathbb {Q}\), and:

    • \(\sup _{y\in [a,b]}g(y) < g(x)\) whenever \(x \not \in [a,b]\), \(a,b\in \mathbb {Q}\) and \([a,b] \subset [x - \epsilon ,x + \epsilon ]\).

    Note that \(\mu ^{2}\) readily yields \(N\in \mathbb {N}\) such that \((\forall y\in B(x, \frac{1}{2^{N}}))( g(y)<g(x))\)..

References

  1. Appell, J., Banaś, J., Merentes, N.: Bounded Variation and Around. De Gruyter Series in Nonlinear Analysis and Applications, vol. 17. De Gruyter, Berlin (2014)

    Google Scholar 

  2. Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica’’) interpretation, handbook of proof theory. Stud. Logic Found. Math. 137, 337–405 (1998)

    Article  Google Scholar 

  3. Bourbaki, N.: Élements de mathématique, Livre IV: Fonctions d’une variable réelle. (Théorie élémentaire), Actualités Sci. Ind., no. 1132, Hermann et Cie., Paris (1951). (French)

    Google Scholar 

  4. Bourbaki, N.: Functions of a Real Variable. Elements of Mathematics, Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-59315-4

    Book  Google Scholar 

  5. Feferman, S., Sieg, W.: Inductive definitions and subsystems of analysis. In: Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies. LNM, vol. 897, pp. 16–77. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091895

    Chapter  Google Scholar 

  6. Cantor, G.: Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. J. Reine Angew. Math. 77, 258–262 (1874)

    Google Scholar 

  7. Gauld, D.: Did the young Volterra know about Cantor? Math. Mag. 66(4), 246–247 (1993)

    Article  Google Scholar 

  8. Gray, R.: Georg Cantor and transcendental numbers. Amer. Math. Monthly 101(9), 819–832 (1994)

    Article  Google Scholar 

  9. Hilbert, D.: Über das Unendliche. Mathematische Annalen 95(1), 161–190 (1926). https://doi.org/10.1007/BF01206605

    Article  Google Scholar 

  10. Hrbacek, K., Jech, T.: Introduction to Set Theory. Monographs and Textbooks in Pure and Applied Mathematics, 3rd edn, vol. 220. Marcel Dekker Inc., New York (1999)

    Google Scholar 

  11. Kleene, S.C.: Recursive functionals and quantifiers of finite types I. Trans. Amer. Math. Soc. 91, 1–52 (1959)

    Google Scholar 

  12. Kohlenbach, U.: Foundational and mathematical uses of higher types. In: Reflections on the Foundations of Mathematics. Lecture Notes in Logic, vol. 15, pp. 92–116. ASL (2002)

    Google Scholar 

  13. Kohlenbach, U.: Higher order reverse mathematics. In: Reverse Mathematics 2001. Lecture Notes in Logic, vol. 21, pp. 281–295. ASL (2005)

    Google Scholar 

  14. Kunen, K.: Set Theory. Studies in Logic, vol. 34. College Publications, London (2011)

    Google Scholar 

  15. Longley, J., Normann, D.: Higher-Order Computability. Theory and Applications of Computability, Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47992-6_9

    Book  Google Scholar 

  16. Moll, V.H.: Numbers and Functions. Student Mathematical Library, vol. 65. American Mathematical Society (2012)

    Google Scholar 

  17. Normann, D.: Computability and non-monotone induction, p. 41 (2020). arXiv: http://arxiv.org/abs/2006.03389

  18. Normann, D., Sanders, S.: Nonstandard analysis, computability theory, and their connections. J. Symbol. Logic 84(4), 1422–1465 (2019)

    Article  Google Scholar 

  19. Normann, D., Sanders, S.: The strength of compactness in computability theory and nonstandard analysis. Ann. Pure Appl. Logic 170(11), 102710 (2019)

    Article  Google Scholar 

  20. Normann, D., Sanders, S.: On the mathematical and foundational significance of the uncountable. J. Math. Logic (2019). https://doi.org/10.1142/S0219061319500016

    Article  Google Scholar 

  21. Normann, D., Sanders, S.: Representations in measure theory. arXiv: http://arxiv.org/abs/1902.02756 (2019, submitted)

  22. Normann, D., Sanders, S.: Open sets in reverse mathematics and computability theory. J. Logic Comput. 30(8), 40 (2020)

    Article  Google Scholar 

  23. Normann, D., Sanders, S.: Pincherle’s theorem in reverse mathematics and computability theory. Ann. Pure Appl. Logic 171(5), 102788, 41 (2020)

    Google Scholar 

  24. Normann, D., Sanders, S.: The axiom of choice in computability theory and reverse mathematics. J. Logic Comput. 31(1), 297–325 (2021)

    Article  Google Scholar 

  25. Normann, D., Sanders, S.: On the uncountability of \(\mathbb{R} \), J. Symb. Logic 41. arXiv: http://arxiv.org/abs/2007.07560 (2022, to appear)

  26. Normann, D., Sanders, S.: On robust theorems due to Bolzano, Weierstrass, and Cantor in Reverse Mathematics, p. 30. arxiv: http://arxiv.org/abs/2102.04787 (2021, submitted)

  27. Normann, D., Sanders, S.: Betwixt Turing and Kleene. In: Artemov, S., Nerode, A. (eds.) LFCS 2022. LNCS, vol. 13137, pp. 236–252. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93100-1_15

    Chapter  Google Scholar 

  28. Normann, D., Sanders, S.: On the computational properties of basic mathematical notions, p. 43. arXiv: http://arxiv.org/abs/2203.05250 (2022, submitted)

  29. Riemann, B.: Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, vol. 13. Habilitation thesis defended in 1854, published in 1867, p. 47

    Google Scholar 

  30. Rudin, W.: Real and Complex Analysis. Lecture Notes in Computer Science, Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2886-2_4

    Book  Google Scholar 

  31. Saks, S.: Theory of the Integral. Dover Publications Inc., New York (1964)

    Google Scholar 

  32. Scheeffer, L.: Allgemeine Untersuchungen über Rectification der Curven. Acta Math. 5(1), 49–82 (1884). (German)

    Article  Google Scholar 

  33. Silva, C.E., Wu, Y.: No functions continuous only at points in a countable dense set. arXiv: http://arxiv.org/abs/1809.06453v3 (2018, preprint)

  34. Stephen, G.: Simpson, Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Logic, CUP (2009)

    Google Scholar 

  35. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic, Springer, Heidelberg (1987)

    Book  Google Scholar 

  36. Thomae, C.J.T.: Einleitung in die Theorie der bestimmten Integrale. Halle a.S., Louis Nebert (1875)

    Google Scholar 

  37. Vatsa, B.S., Vatsa, S.: Discrete Mathematics, 4th revised edn. New Age International, Delhi (2009)

    Google Scholar 

  38. Volterra, V.: Alcune osservasioni sulle funzioni punteggiate discontinue. Giornale di matematiche XIX, 76–86 (1881)

    Google Scholar 

  39. Wikipedia Contributors: Cantor’s first set theory article. Wikipedia, The Free Encyclopedia (2020). http://en.wikipedia.org/wiki/Cantor%27s_first_set_theory_article

Download references

Acknowledgement

We thank Anil Nerode for his valuable advice. Our research was supported by the Deutsche Forschungsgemeinschaft via the DFG grant SA3418/1-1. Initial results were obtained during the stimulating MFO workshop (ID 2046) on proof theory and constructive mathematics in Oberwolfach in early Nov. 2020. We express our gratitude towards the aforementioned institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Sanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanders, S. (2022). On the Computational Properties of the Uncountability of the Real Numbers. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds) Logic, Language, Information, and Computation. WoLLIC 2022. Lecture Notes in Computer Science, vol 13468. Springer, Cham. https://doi.org/10.1007/978-3-031-15298-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15298-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15297-9

  • Online ISBN: 978-3-031-15298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics