Skip to main content

Development of Gut Motility

  • Chapter
  • First Online:
  • 732 Accesses

Abstract

Coordinated movements of the gastrointestinal tract are regulated by multiple control systems including the enteric nervous system, extrinsic neurons, epithelial cells, interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α (PDGFRα)-expressing cells, and myogenic mechanisms. Studies using laboratory animals have shown that enteric neurons develop early, but the first gastrointestinal motility patterns are myogenic, and not neurally mediated. Nevertheless, contractile activity mediated by neurons is prominent by birth, and required for propulsion of content as is evident from the bowel obstruction proximal to the aganglionic region in infants with Hirschsprung disease and in animal models of this disease. ICC development requires signaling via the tyrosine kinase receptor, Kit. Studies in preterm and term humans have shown that esophageal peristalsis and sphincter function mature during the late fetal and early postnatal stages. Maturation continues to advance beyond birth with improvement in the characteristics of sensory-motor aspects of reflexes, coordination and integration with other organ systems. However, little is known about the maturation and adaptation of motility in the small and large bowel of human infants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the field of gastrointestinal motility, the term “myogenic” has been used to describe contractile activity generated by ICC as well as muscle cells, but here we use the term myogenic to refer to contractions specifically originating from the muscle cells themselves.

References

  1. Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR, Linden DR, Li JH, Leiter AB, Szurszewski JH, Farrugia G, Beyder A. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci USA. 2018;115:E7632–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1–8.

    CAS  PubMed  Google Scholar 

  3. Sanders KM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil. 2008;20(Suppl 1):39–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94:859–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Treichel AJ, Finholm I, Knutson KR, Alcaino C, Whiteman ST, Brown MR, Matveyenko A, Wegner A, Kacmaz H, Mercado-Perez A, Gajdos GB, Ordog T, Grover M, Szurzewski J, Linden DR, Farrugia G, Beyder A. Specialized mechanosensory epithelial cells in mouse gut intrinsic tactile sensitivity. Gastroenterology. 2022;162(2):535–547.e13.

    CAS  PubMed  Google Scholar 

  6. Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, Grover M, Oeckler R, Gottlieb PA, Li HJ, Leiter AB, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol. 2017;595:79–91.

    CAS  PubMed  Google Scholar 

  7. Hasler WL. Motility of the small intestine and colon. In: Yamada T, editor. Textbook of gastroenterology. 5th ed. Philadelphia: Wiley-Blackwell; 2009. p. 231–63.

    Google Scholar 

  8. Roberts RR, Ellis M, Gwynne RM, Bergner AJ, Lewis MD, Beckett EA, Bornstein JC, Young HM. The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. J Physiol. 2010;588:1153–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Huizinga JD, Chen JH. The myogenic and neurogenic components of the rhythmic segmentation motor patterns of the intestine. Front Neurosci. 2014;8:78.

    PubMed  PubMed Central  Google Scholar 

  10. Gwynne RM, Thomas EA, Goh SM, Sjövall H, Bornstein JC. Segmentation induced by intraluminal fatty acid in isolated Guinea-pig duodenum and jejunum. J Physiol. 2004;556:557–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huizinga JD, Chen JH, Zhu YF, Pawelka A, McGinn RJ, Bardakjian BL, Parsons SP, Kunze WA, Wu RY, Bercik P, Khoshdel A, Chen S, Yin S, Zhang Q, Yu Y, Gao Q, Li K, Hu X, Zarate N, Collins P, Pistilli M, Ma J, Zhang R, Chen D. The origin of segmentation motor activity in the intestine. Nat Commun. 2014;5:3326.

    PubMed  Google Scholar 

  12. McKeown SJ, Stamp L, Hao MM, Young HM. Hirschsprung disease: A developmental disorder of the enteric nervous system. WIRES Dev Biol. 2013;2:113–29.

    CAS  Google Scholar 

  13. Costa M, Hibberd TJ, Keightley LJ, Wiklendt L, Arkwright JW, Dinning PG, Brookes SJH, Spencer NJ. Neural motor complexes propagate continuously along the full length of mouse small intestine and colon. Am J Physiol Gastrointest Liver Physiol. 2020;318:G99–G108.

    CAS  PubMed  Google Scholar 

  14. Hanman A, Chen J-H, Parsons SP, Huizinga JD. Noradrenaline inhibits neurogenic propulsive motor patterns but not neurogenic segmenting haustral progression in the rabbit colon. Neurogastroenterol Motil. 2019;31:e13567.

    CAS  PubMed  Google Scholar 

  15. Lentle RG, Janssen PW, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y. High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit. J Comp Physiol B. 2008;178:257–68.

    PubMed  Google Scholar 

  16. Bornstein JC, Foong JPP. Enteric neural regulation of mucosal secretion. In: Said HM, editor. Physiology of the gastrointestinal tract. 6th ed. Cambridge: Academic Press; 2018. p. 429–51.

    Google Scholar 

  17. Chevalier NR. The first digestive movements in the embryo are mediated by mechanosensitive smooth muscle calcium waves. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373:20170322.

    Google Scholar 

  18. Chevalier NR, Fleury V, Dufour S, Proux-Gillardeaux V, Asnacios A. Emergence and development of gut motility in the chicken embryo. PLoS One. 2017;12:e0172511.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Roberts RR, Murphy JF, Young HM, Bornstein JC. Development of colonic motility in the neonatal mouse-studies using spatiotemporal maps. Am J Physiol Gastrointest Liver Physiol. 2007;292:G930–8.

    CAS  PubMed  Google Scholar 

  20. Field HA, Kelley KA, Martell L, Goldstein AM, Serluca FC. Analysis of gastrointestinal physiology using a novel intestinal transit assay in zebrafish. Neurogastroenterol Motil. 2009;21:304–12.

    CAS  PubMed  Google Scholar 

  21. Holmberg A, Olsson C, Hennig GW. TTX-sensitive and TTX-insensitive control of spontaneous gut motility in the developing zebrafish (Danio rerio) larvae. J Exp Biol. 2007;210:1084–91.

    CAS  PubMed  Google Scholar 

  22. Holmberg A, Olsson C, Holmgren S. The effects of endogenous and exogenous nitric oxide on gut motility in zebrafish Danio rerio embryos and larvae. J Exp Biol. 2006;209:2472–9.

    CAS  PubMed  Google Scholar 

  23. Holmberg A, Schwerte T, Fritsche R, Pelster B, Holmgren S. Ontogeny of intestinal motility in correlation to neuronal development in zebrafish embryos and larvae. J Fish Biol. 2003;63:318–31.

    Google Scholar 

  24. Holmberg A, Schwerte T, Pelster B, Holmgren S. Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae. J Exp Biol. 2004;207:4085–94.

    PubMed  Google Scholar 

  25. Kuhlman J, Eisen JS. Genetic screen for mutations affecting development and function of the enteric nervous system. Dev Dyn. 2007;236:118–27.

    PubMed  Google Scholar 

  26. Bonora E, Bianco F, Cordeddu L, Bamshad M, Francescatto L, Dowless D, Stanghellini V, Cogliandro RF, Lindberg G, Mungan Z, Cefle K, Ozcelik T, Palanduz S, Ozturk S, Gedikbasi A, Gori A, Pippucci T, Graziano C, Volta U, Caio G, Barbara G, D'Amato M, Seri M, Katsanis N, Romeo G, De Giorgio R. Mutations in RAD21 disrupt regulation of APOB in patients with chronic intestinal pseudo-obstruction. Gastroenterology. 2015;148(771–782):e711–71.

    Google Scholar 

  27. Rasch S, Sangild PT, Gregersen H, Schmidt M, Omari T, Lau C. The preterm piglet - a model in the study of oesophageal development in preterm neonates. Acta Paediatr. 2010;99:201–8.

    CAS  PubMed  Google Scholar 

  28. McLain CR Jr. Amniography studies of the gastrointestinal motility of the human fetus. Am J Obstet Gynecol. 1963;86:1079–87.

    Google Scholar 

  29. Sase M, Lee JJ, Park JY, Thakur A, Ross MG, Buchmiller-Crair TL. Ontogeny of fetal rabbit upper gastrointestinal motility. J Surg Res. 2001a;101:68–72.

    CAS  PubMed  Google Scholar 

  30. Sase M, Lee JJ, Ross MG, Buchmiller-Crair TL. Effect of hypoxia on fetal rabbit gastrointestinal motility. J Surg Res. 2001b;99:347–51.

    CAS  PubMed  Google Scholar 

  31. Anderson RB, Enomoto H, Bornstein JC, Young HM. The enteric nervous system is not essential for the propulsion of gut contents in fetal mice. Gut. 2004;53:1546–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973;30:31–48.

    PubMed  Google Scholar 

  33. Yntema CL, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol. 1954;101:515–41.

    CAS  PubMed  Google Scholar 

  34. Burns AJ, Le Douarin NM. The sacral neural crest contributes neurons and glia to the post- umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development. 1998;125:4335–47.

    CAS  PubMed  Google Scholar 

  35. Kapur RP. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol. 2000;227:146–55.

    CAS  PubMed  Google Scholar 

  36. Wang X, Chan AK, Sham MH, Burns AJ, Chan WY. Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology. 2011;141(992–1002):e1001–6.

    Google Scholar 

  37. Pawolski V, Schmidt MFF. Neuron–glia interaction in the developing and adult enteric nervous system. Cell. 2021;10:47.

    CAS  Google Scholar 

  38. Uesaka T, Nagashimada M, Enomoto H. Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci. 2015;35:9879–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brokhman I, Xu J, Coles BLK, Razavi R, Lickert H, Babona-Pilipos R, Morshead CM, Sibley E, Chen C, van der Kooy D. Dual embryonic origin of the mammalian enteric nervous system. Dev Biol. 2019;445:256–70.

    CAS  PubMed  Google Scholar 

  40. Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 2013a;10:43–57.

    CAS  PubMed  Google Scholar 

  41. Young HM, Bergner AJ, Anderson RB, Enomoto H, Milbrandt J, Newgreen DF, Whitington PM. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol. 2004;270:455–73.

    CAS  PubMed  Google Scholar 

  42. Young HM, Bergner AJ, Simpson MJ, McKeown SJ, Hao MM, Anderson CR, Enomoto H. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol. 2014;12:23.

    PubMed  PubMed Central  Google Scholar 

  43. Baetge G, Pintar JE, Gershon MD. Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev Biol. 1990a;141:353–80.

    CAS  PubMed  Google Scholar 

  44. Baetge G, Schneider KA, Gershon MD. Development and persistence of catecholaminergic neurons in cultured explants of fetal murine vagus nerves and bowel. Development. 1990b;110:689–701.

    CAS  PubMed  Google Scholar 

  45. Lasrado R, Boesmans W, Kleinjung J, Pin C, Bell D, Bhaw L, McCallum S, Zong H, Luo L, Clevers H, Vanden Berghe P, Pachnis V. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science. 2017;356:722–6.

    CAS  PubMed  Google Scholar 

  46. Hao MM, Lomax AE, McKeown SJ, Reid CA, Young HM, Bornstein JC. Early development of electrical excitability in the mouse enteric nervous system. J Neurosci. 2012;32:10949–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hao MM, Young HM. Development of enteric neuron diversity. J Cell Mol Med. 2009;13:1193–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, Eraslan G, Dionne D, Cuoco MS, Goder-Reiser MN, Sharova T, Kuksenko O, Aguirre AJ, Boland GM, Graham D, Rozenblatt-Rosen O, Xavier RJ, Regev A. The human and mouse enteric nervous system at single-cell resolution. Cell. 2020;182, 1606–1622 e1623, 1606.

    Google Scholar 

  49. Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81:87–96.

    CAS  PubMed  Google Scholar 

  50. May-Zhang AA, Tycksen E, Southard-Smith AN, Deal KK, Benthal JT, Buehler DP, Adam M, Simmons AJ, Monaghan JR, Matlock BK, Flaherty DK, Potter SS, Lau KS, Southard-Smith EM. Combinatorial transcriptional profiling of mouse and human enteric neurons identifies shared and disparate subtypes in situ. Gastroenterology. 2021;160, 755–770.e726, 755.

    Google Scholar 

  51. Morarach K, Mikhailova A, Knoflach V, Memic F, Kumar R, Li W, Ernfors P, Marklund U. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat Neurosci. 2021;24:34–46.

    CAS  PubMed  Google Scholar 

  52. Wright CM, Schneider S, Smith-Edwards KM, Mafra F, Leembruggen AJL, Gonzalez MV, Kothakapa DR, Anderson JB, Maguire BA, Gao T, Missall TA, Howard MJ, Bornstein JC, Davis BM, Heuckeroth RO. scRNA-Seq reveals new enteric nervous system roles for GDNF, NRTN, and TBX3. Cell Mol Gastroenterol Hepatol. 2021;11(1548–1592):e1541–8.

    Google Scholar 

  53. Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S. Molecular architecture of the mouse nervous system. Cell. 2018;174(999–1014):999–e1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bergner AJ, Stamp LA, Gonsalvez DG, Allison MB, Olson DP, Myers MG Jr, Anderson CR, Young HM. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J Comp Neurol. 2014;522:514–27.

    CAS  PubMed  Google Scholar 

  55. Chalazonitis A, Pham TD, Li Z, Roman D, Guha U, Gomes W, Kan L, Kessler JA, Gershon MD. Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol. 2008;509:474–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pham TD, Gershon MD, Rothman TP. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J Comp Neurol. 1991;314:789–98.

    CAS  PubMed  Google Scholar 

  57. Muller PA, Matheis F, Schneeberger M, Kerner Z, Jové V, Mucida D. Microbiota-modulated CART+ enteric neurons autonomously regulate blood glucose. Science. 2020;370:314–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hao MM, Boesmans W, Van den Abeel V, Jennings EA, Bornstein JC, Young HM, Vanden Berghe P. Early emergence of neural activity in the developing mouse enteric nervous system. J Neurosci. 2011;31(43):15352–61. https://doi.org/10.1523/JNEUROSCI.3053-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Obermayr F, Stamp LA, Anderson CR, Young HM. Genetic fate-mapping of tyrosine hydroxylase-expressing cells in the enteric nervous system. Neurogastroenterol Motil. 2013b;25:e283–91.

    CAS  PubMed  Google Scholar 

  60. Young HM, Ciampoli D. Transient expression of neuronal nitric oxide synthase by neurons of the submucous plexus of the mouse small intestine. Cell Tissue Res. 1998;291:395–401.

    CAS  PubMed  Google Scholar 

  61. Hao MM, Bornstein JC, Vanden Berghe P, Lomax AE, Young HM, Foong JP. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol. 2013;382:365–74.

    CAS  PubMed  Google Scholar 

  62. Memic F, Knoflach V, Morarach K, Sadler R, Laranjeira C, Hjerling-Leffler J, Sundström E, Pachnis V, Marklund U. Transcription and signaling regulators in developing neuronal subtypes of mouse and human enteric nervous system. Gastroenterology. 2018;154:624–36.

    CAS  PubMed  Google Scholar 

  63. Sasselli V, Pachnis V, Burns AJ. The enteric nervous system. Dev Biol. 2012;366:64–73.

    CAS  PubMed  Google Scholar 

  64. Brookes SJ. Neuronal nitric oxide in the gut. J Gastroenterol Hepatol. 1993;8:590–603.

    CAS  PubMed  Google Scholar 

  65. Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286–94.

    CAS  PubMed  Google Scholar 

  66. Brookes SJ. Classes of enteric nerve cells in the Guinea-pig small intestine. Anat Rec. 2001;262:58–70.

    CAS  PubMed  Google Scholar 

  67. Branchek TA, Gershon MD. Time course of expression of neuropeptide Y, calcitonin gene-related peptide, and NADPH diaphorase activity in neurons of the developing murine bowel and the appearance of 5-hydroxytryptamine in mucosal enterochromaffin cells. J Comp Neurol. 1989;285:262–73.

    CAS  PubMed  Google Scholar 

  68. Uyttebroek L, Shepherd IT, Harrisson F, Hubens G, Blust R, Timmermans JP, Van Nassauw L. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518:4419–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Parathan P, Wang Y, Leembruggen AJ, Bornstein JC, Foong JP. The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Dev Biol. 2020;458:75–87.

    CAS  PubMed  Google Scholar 

  70. Patel BA, Dai X, Burda JE, Zhao H, Swain GM, Galligan JJ, Bian X. Inhibitory neuromuscular transmission to ileal longitudinal muscle predominates in neonatal guinea pigs. Neurogastroenterol Motil. 2010;22, 909–918, e236–907.

    Google Scholar 

  71. de Vries P, Soret R, Suply E, Heloury Y, Neunlist M. Postnatal development of myenteric neurochemical phenotype and impact on neuromuscular transmission in the rat colon. Am J Physiol Gastrointest Liver Physiol. 2010;299:G539–47.

    PubMed  Google Scholar 

  72. Rothman TP, Gershon MD. Phenotypic expression in the developing murine enteric nervous system. J Neurosci. 1982;2:381–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Erickson CS, Lee SJ, Barlow-Anacker AJ, Druckenbrod NR, Epstein ML, Gosain A. Appearance of cholinergic myenteric neurons during enteric nervous system development: comparison of different ChAT fluorescent mouse reporter lines. Neurogastroenterol Motil. 2014;26:874–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Abalo R, Vera G, Rivera AJ, Moro-Rodríguez E, Martín-Fontelles MI. Postnatal maturation of the gastrointestinal tract: a functional and immunohistochemical study in the Guinea-pig ileum at weaning. Neurosci Lett. 2009;467:105–10.

    CAS  PubMed  Google Scholar 

  75. Matini P, Mayer B, Faussone-Pellegrini MS. Neurochemical differentiation of rat enteric neurons during pre- and postnatal life. Cell Tissue Res. 1997;288:11–23.

    CAS  PubMed  Google Scholar 

  76. Vannucchi MG, Faussone-Pellegrini MS. Differentiation of cholinergic cells in the rat gut during pre- and postnatal life. Neurosci Lett. 1996;206:105–8.

    CAS  PubMed  Google Scholar 

  77. Chevalier NR, Agbesi RJA, Ammouche Y, Dufour S. How smooth muscle contractions shape the developing enteric nervous system. Front Cell Dev Biol. 2021a;9:678975.

    PubMed  PubMed Central  Google Scholar 

  78. Chevalier NR, Ammouche Y, Gomis A, Langlois L, Guilbert T, Bourdoncle P, Dufour S. A neural crest cell isotropic-to-nematic phase transition in the developing mammalian gut. Com Biol. 2021b;4:770.

    CAS  Google Scholar 

  79. Young HM, Jones BR, McKeown SJ. The projections of early enteric neurons are influenced by the direction of neural crest cell migration. J Neurosci. 2002;22:6005–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Foong JP, Nguyen TV, Furness JB, Bornstein JC, Young HM. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol. 2012;590:2375–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sasselli V, Boesmans W, Vanden Berghe P, Tissir F, Goffinet AM, Pachnis V. Planar cell polarity genes control the connectivity of enteric neurons. J Clin Invest. 2013;123:1763–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kulkarni S, Micci MA, Leser J, Shin C, Tang SC, Fu YY, Liu L, Li Q, Saha M, Li C, Enikolopov G, Becker L, Rakhilin N, Anderson M, Shen X, Dong X, Butte MJ, Song H, Southard-Smith EM, Kapur RP, Bogunovic M, Pasricha PJ. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci U S A. 2017;114:E3709–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hao MM, Bergner AJ, Hirst CS, Stamp LA, Casagranda F, Bornstein JC, Boesmans W, Vanden Berghe P, Young HM. Spontaneous calcium waves in the developing enteric nervous system. Dev Biol. 2017;428:74–87.

    CAS  PubMed  Google Scholar 

  84. Foong JP, Hirst CS, Hao MM, McKeown SJ, Boesmans W, Young HM, Bornstein JC, Vanden BP. Changes in nicotinic neurotransmission during enteric nervous system development. J Neurosci. 2015;35:7106–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gwynne RM, Bornstein JC. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr Neuropharmacol. 2007;5:1–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vannucchi MG, Faussone-Pellegrini MS. Synapse formation during neuron differentiation: an in situ study of the myenteric plexus during murine embryonic life. J Comp Neurol. 2000;425:369–81.

    CAS  PubMed  Google Scholar 

  87. Hirst CS, Foong JP, Stamp LA, Fegan E, Dent S, Cooper EC, Lomax AE, Anderson CR, Bornstein JC, Young HM, McKeown SJ. Ion channel expression in the developing enteric nervous system. PLoS One. 2015;10:e0123436.

    PubMed  PubMed Central  Google Scholar 

  88. Chevalier NR, Dacher N, Jacques C, Langlois L, Guedj C, Faklaris O. Embryogenesis of the peristaltic reflex. J Physiol. 2019;597:2785–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sundqvist M, Holmgren S. Ontogeny of excitatory and inhibitory control of gastrointestinal motility in the African clawed frog, Xenopus laevis. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1138–44.

    CAS  PubMed  Google Scholar 

  90. Zagorodnyuk VP, Hoyle CH, Burnstock G. An electrophysiological study of developmental changes in the innervation of the Guinea-pig taenia coli. Pflugers Arch. 1993;423:427–33.

    CAS  PubMed  Google Scholar 

  91. Ward SM, Harney SC, Bayguinov JR, McLaren GJ, Sanders KM. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis. J Physiol Lond. 1997;505:241–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wittmeyer V, Merrot T, Mazet B. Tonic inhibition of human small intestinal motility by nitric oxide in children but not in adults. Neurogastroenterol Motil. 2010;22:1078.

    CAS  PubMed  Google Scholar 

  93. Li Z, Caron MG, Blakely RD, Margolis KG, Gershon MD. Dependence of serotonergic and other nonadrenergic enteric neurons on norepinephrine transporter expression. J Neurosci. 2010;30:16730–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Li Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG, Yang QM, Kim DO, Côté F, Mallet J, Gershon MD. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci. 2011;31:8998–9009.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia. 2015;63:229–41.

    PubMed  Google Scholar 

  96. Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, Pettersson S, Pachnis V. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85:289–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18:571–87.

    PubMed  PubMed Central  Google Scholar 

  98. Broadhead MJ, Bayguinov PO, Okamoto T, Heredia DJ, Smith TK. Ca2+ transients in myenteric glial cells during the colonic migrating motor complex in the isolated murine large intestine. J Physiol. 2012;590:335–50.

    CAS  PubMed  Google Scholar 

  99. McClain JL, Fried DE, Gulbransen BD. Agonist-evoked ca(2+) signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol Gastroenterol Hepatol. 2015;1:631–45.

    PubMed  PubMed Central  Google Scholar 

  100. McClain J, Grubišić V, Fried D, Gomez-Suarez RA, Leinninger GM, Sévigny J, Parpura V, Gulbransen BD. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology. 2014;146, 497–507.e491, 497.

    Google Scholar 

  101. Grubišić V, Parpura V. Two modes of enteric gliotransmission differentially affect gut physiology. Glia. 2017;65:699–711.

    PubMed  PubMed Central  Google Scholar 

  102. Young HM, Bergner AJ, Müller T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol. 2003;456:1–11.

    PubMed  Google Scholar 

  103. Rothman TP, Tennyson VM, Gershon MD. Colonization of the bowel by the precursors of enteric glia: studies of normal and congenitally aganglionic mutant mice. J Comp Neurol. 1986;252:493–506.

    CAS  PubMed  Google Scholar 

  104. Ellis M, Chambers JD, Gwynne RM, Bornstein JC. Serotonin (5-HT) and cholecystokinin (CCK) mediate nutrient induced segmentation in Guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol. 2013;304:G749–61.

    CAS  PubMed  Google Scholar 

  105. Schemann M, Ehrlein HJ. Postprandial patterns of canine jejunal motility and transit of luminal content. Gastroenterology. 1986;90:991–1000.

    CAS  PubMed  Google Scholar 

  106. Sharkey KA, Beck PL, McKay DM. Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol. 2018;15:765–84.

    CAS  PubMed  Google Scholar 

  107. Liddle RA. Neuropods. Cell Mol Gastroenterol Hepatol. 2019;7:739–47.

    PubMed  PubMed Central  Google Scholar 

  108. Fung C, Cools B, Malagola S, Martens T, Tack J, Kazwiny Y, Vanden BP. Luminal short-chain fatty acids and 5-HT acutely activate myenteric neurons in the mouse proximal colon. Neurogastroenterol Motil. 2021;33:e14186.

    CAS  PubMed  Google Scholar 

  109. Hao MM, Fung C, Boesmans W, Lowette K, Tack J, Vanden BP. Development of the intrinsic innervation of the small bowel mucosa and villi. Am J Physiol Gastrointest Liver Physiol. 2020;318:G53–65.

    CAS  PubMed  Google Scholar 

  110. Dehmer JJ, Garrison AP, Speck KE, Dekaney CM, Van Landeghem L, Sun X, Henning SJ, Helmrath MA. Expansion of intestinal epithelial stem cells during murine development. PLoS One. 2011;6:e27070.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mazzuoli G, Schemann M. Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS One. 2012;7:e39887.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jones LA, Sun EW, Martin AM, Keating DJ. The ever-changing roles of serotonin. Int J Biochem Cell Biol. 2020;125:105776.

    CAS  PubMed  Google Scholar 

  113. Chevalier NR, Ammouche Y, Gomis A, Teyssaire C, de Santa BP, Faure S. Shifting into high gear: how interstitial cells of Cajal change the motility pattern of the developing intestine. Am J Physiol Gastrointest Liver Physiol. 2020;319:G519–28.

    CAS  PubMed  Google Scholar 

  114. Faussone-Pellegrini MS, Cortesini C. The muscle coat of the lower esophageal sphincter in patients with achalasia and hypertensive sphincter. An electron microscopic study. J Submicrosc Cytol. 1985;17:673–85.

    CAS  PubMed  Google Scholar 

  115. Gockel I, Bohl JR, Eckardt VF, Junginger T. Reduction of interstitial cells of Cajal (ICC) associated with neuronal nitric oxide synthase (n-NOS) in patients with achalasia. Am J Gastroenterol. 2008;103:856–64.

    PubMed  Google Scholar 

  116. Forster J, Damjanov I, Lin Z, Sarosiek I, Wetzel P, McCallum RW. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg. 2005;9:102–8.

    PubMed  Google Scholar 

  117. Horváth VJ, Vittal H, Lörincz A, Chen H, Almeida-Porada G, Redelman D, Ordög T. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis. Gastroenterology. 2006;130:759–70.

    PubMed  Google Scholar 

  118. Long QL, Fang DC, Shi HT, Luo YH. Gastro-electric dysrhythm and lack of gastric interstitial cells of cajal. World J Gastroenterol. 2004;10:1227–30.

    PubMed  PubMed Central  Google Scholar 

  119. Ordög T, Takayama I, Cheung WK, Ward SM, Sanders KM. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000;49:1731–9.

    PubMed  Google Scholar 

  120. Langer JC, Berezin I, Daniel EE. Hypertrophic pyloric stenosis: ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal. J Pediatr Surg. 1995;30:1535–43.

    CAS  PubMed  Google Scholar 

  121. Feldstein AE, Miller SM, El-Youssef M, Rodeberg D, Lindor NM, Burgart LJ, Szurszewski JH, Farrugia G. Chronic intestinal pseudoobstruction associated with altered interstitial cells of cajal networks. J Pediatr Gastroenterol Nutr. 2003;36:492–7.

    PubMed  Google Scholar 

  122. He CL, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J, Farrugia G. Decreased interstitial cell of cajal volume in patients with slow-transit constipation. Gastroenterology. 2000;118:14–21.

    CAS  PubMed  Google Scholar 

  123. Tong WD, Liu BH, Zhang LY, Xiong RP, Liu P, Zhang SB. Expression of c-kit messenger ribonucleic acid and c-kit protein in sigmoid colon of patients with slow transit constipation. Int J Color Dis. 2005;20:363–7.

    Google Scholar 

  124. Vannucchi MG, Traini C. Interstitial cells of Cajal and telocytes in the gut: twins, related or simply neighbor cells? BioMol Con. 2016;7:93–102.

    CAS  Google Scholar 

  125. Hirst GD & Edwards FR. (2001). Generation of slow waves in the antral region of guinea-pig stomach--a stochastic process. J Physiol 535, 165–180.

    Google Scholar 

  126. Huizinga JD, Thuneberg L, Klüppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373:347–9.

    CAS  PubMed  Google Scholar 

  127. Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Phys. 1995;269:C1577–85.

    CAS  Google Scholar 

  128. Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994;480(Pt 1):91–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Baker SA, Leigh WA, Del Valle G, De Yttriaga IF, Ward SM, Cobine CA, Drumm BT, Sanders KM. Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. eLife. 2021;10:e64099.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Smith TK, Reed JB, Sanders KM. Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. Am J Phys. 1987;252:C215–24.

    CAS  Google Scholar 

  131. Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A. 1996;93:12008–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Drumm BT, Rembetski BE, Huynh K, Nizar A, Baker SA, Sanders KM. Excitatory cholinergic responses in mouse colon intramuscular interstitial cells of Cajal are due to enhanced Ca2+ release via M3 receptor activation. FASEB J. 2020;34:10073–95.

    CAS  PubMed  Google Scholar 

  133. Kurahashi M, Mutafova-Yambolieva V, Koh SD, Sanders KM. Platelet-derived growth factor receptor-alpha-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am J Physiol Cell Physiol. 2014;307:C561–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sanders KM, Ward SM. Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract. Br J Pharmacol. 2019;176:212–27.

    CAS  PubMed  Google Scholar 

  135. Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci. 2000;20:1393–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lecoin L, Gabella G, Le Douarin N. Origin of the c-kit-positive interstitial cells in the avian bowel. Development. 1996;122:725–33.

    CAS  PubMed  Google Scholar 

  137. Young HM, Ciampoli D, Southwell BR, Newgreen DF. Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol. 1996;180:97–107.

    CAS  PubMed  Google Scholar 

  138. Ward SM, Ordög T, Bayguinov JR, Horowitz B, Epperson A, Shen L, Westphal H, Sanders KM. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology. 1999;117:584–94.

    CAS  PubMed  Google Scholar 

  139. Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59:384–401.

    CAS  PubMed  Google Scholar 

  140. Huizinga JD, Berezin I, Sircar K, Hewlett B, Donnelly G, Bercik P, Ross C, Algoufi T, Fitzgerald P, Der T, Riddell RH, Collins SM, Jacobson K. Development of interstitial cells of Cajal in a full-term infant without an enteric nervous system. Gastroenterology. 2001;120:561–7.

    CAS  PubMed  Google Scholar 

  141. Carmona R, Cano E, Mattiotti A, Gaztambide J, Muñoz-Chápuli R. Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos. PLoS One. 2013;8:e55890.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Klüppel M, Huizinga JD, Malysz J, Bernstein A. Developmental origin and kit-dependent development of the interstitial cells of cajal in the mammalian small intestine. Dev Dyn. 1998;211:60–71.

    PubMed  Google Scholar 

  143. Torihashi S, Ward SM, Sanders KM. Development of c-kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology. 1997;112:144–55.

    CAS  PubMed  Google Scholar 

  144. Beckett EA, Ro S, Bayguinov Y, Sanders KM, Ward SM. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn. 2007;236:60–72.

    CAS  PubMed  Google Scholar 

  145. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116:369–75.

    CAS  PubMed  Google Scholar 

  146. Young HM, Torihashi S, Ciampoli D, Sanders KM. Identification of neurons that express stem cell factor in the mouse small intestine. Gastroenterology. 1998;115:898–908.

    CAS  PubMed  Google Scholar 

  147. Spencer NJ, Sanders KM, Smith TK. Migrating motor complexes do not require electrical slow waves in the mouse small intestine. J Physiol. 2003;553:881–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hennig GW, Spencer NJ, Jokela-Willis S, Bayguinov PO, Lee HT, Ritchie LA, Ward SM, Smith TK, Sanders KM. ICC-MY coordinate smooth muscle electrical and mechanical activity in the murine small intestine. Neurogastroenterol Motil. 2010b;22:e138–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280:97–111.

    CAS  PubMed  Google Scholar 

  150. Iino S, Horiguchi K, Horiguchi S. C-kit-stem cell factor signal–independent development of interstitial cells of Cajal in murine small intestine. Cell Tiss Res. 2020;379:121–9.

    CAS  Google Scholar 

  151. Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol. 2001;281:G602–11.

    CAS  PubMed  Google Scholar 

  152. Beckett EA, Horiguchi K, Khoyi M, Sanders KM, Ward SM. Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice. J Physiol. 2002;543:871–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hwang SJ, Pardo DM, Zheng H, Bayguinov Y, Blair PJ, Fortune-Grant R, Cook RS, Hennig GW, Shonnard MC, Grainger N, Peri LE, Verma SD, Rock J, Sanders KM, Ward SM. Differential sensitivity of gastric and small intestinal muscles to inducible knockdown of anoctamin 1 and the effects on gastrointestinal motility. J Physiol Lond. 2019;597:2337–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Faussone-Pellegrini MS. Cytodifferentiation of the interstitial cells of Cajal related to the myenteric plexus of mouse intestinal muscle coat. An E.M. study from foetal to adult life. Anat Embryol (Berl). 1985;171:163–9.

    CAS  PubMed  Google Scholar 

  155. Faussone-Pellegrini MS, Matini P, Stach W. Differentiation of enteric plexuses and interstitial cells of Cajal in the rat gut during pre- and postnatal life. Acta Anat (Basel). 1996;155:113–25.

    CAS  PubMed  Google Scholar 

  156. Ward SM, McLaren GJ, Sanders KM. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. J Physiol. 2006;573:147–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kondo J, Powell AE, Wang Y, Musser MA, Southard-Smith EM, Franklin JL, Coffey RJ. LRIG1 regulates ontogeny of smooth muscle-derived subsets of interstitial cells of Cajal in mice. Gastroenterology. 2015;149, 407–419.e408, 407.

    Google Scholar 

  158. Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst. 2000;80:142–7.

    CAS  PubMed  Google Scholar 

  159. Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol. 1999;62:295–316.

    CAS  PubMed  Google Scholar 

  160. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Investig. 1999;79:59–65.

    CAS  PubMed  Google Scholar 

  161. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract. Cell Tissue Res. 2000;302:145–53.

    CAS  PubMed  Google Scholar 

  162. Iino S, Horiguchi K, Horiguchi S, Nojyo Y. C-kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem Cell Biol. 2009;131:691–702.

    CAS  PubMed  Google Scholar 

  163. Blair PJ, Bayguinov Y, Sanders KM, Ward SM. Relationship between enteric neurons and interstitial cells in the primate gastrointestinal tract. Neurogastroenterol Motil. 2012;24:e437–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Cobine CA, Hennig GW, Kurahashi M, Sanders KM, Ward SM, Keef KD. Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res. 2011;344:17–30.

    PubMed  PubMed Central  Google Scholar 

  165. Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRalpha in the human gastrointestinal tract. J Cell Mol Med. 2013;17:1099–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Peri LE, Sanders KM, Mutafova-Yambolieva VN. Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRalpha-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol Motil. 2013;25:e609–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM. Distribution and ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the murine gastric fundus. J Physiol. 2013;591:6193–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Lin Q, Qin M, Zhao S-g, Dou W-j, Zhang R, Li Y-l, Xi Y-h, Xu J-q, L-t M, Wang J-j. The roles of PDGFRα signaling in the postnatal development and functional maintenance of the SMC-ICC-PDGFRα+ cell (SIP) syncytium in the colon. Neurogastroenterol Mot. 2019;31:e13568.

    CAS  Google Scholar 

  169. Hennig GW, Gregory S, Brookes SJ, Costa M. Non-peristaltic patterns of motor activity in the Guinea-pig proximal colon. Neurogastroenterol Motil. 2010a;22:e207–17.

    CAS  PubMed  Google Scholar 

  170. Roberts RR, Bornstein JC, Bergner AJ, Young HM. Disturbances of colonic motility in mouse models of Hirschsprung's disease. Am J Physiol Gastrointest Liver Physiol. 2008;294:G996–G1008.

    CAS  PubMed  Google Scholar 

  171. Lang RJ, Takano H, Davidson ME, Suzuki H, Klemm MF. Characterization of the spontaneous electrical and contractile activity of smooth muscle cells in the rat upper urinary tract. J Urol. 2001;166:329–34.

    CAS  PubMed  Google Scholar 

  172. Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol. 2014;592:2959–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Suply E, de Vries P, Soret R, Cossais F, Neunlist M. Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1373–80.

    CAS  PubMed  Google Scholar 

  174. Lesniewska V, Laerke HN, Hedemann MS, Hojsgaard S, Pierzynowski SG, Jensen BB. The effect of change of the diet and feeding regimen at weaning on duodenal myoelectrical activity in piglets. Animal Sci. 2000;71:443–51.

    Google Scholar 

  175. Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, Neunlist M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138:1772–82.

    CAS  PubMed  Google Scholar 

  176. Soni KG, Dike PN, Suh JH, Halder T, Edwards PT, Foong JPP, Conner ME, Preidis GA. Early-life malnutrition causes gastrointestinal dysmotility that is sexually dimorphic. Neurogastroenterol Motil. 2020;32:e13936.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Foong JPP, Hung LY, Poon S, Savidge TC, Bornstein JC. Early life interaction between the microbiota and the enteric nervous system. Am J Physiol Gastrointest Liver Physiol. 2020;319:G541–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Hung LY, Parathan P, Boonma P, Wu Q, Wang Y, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. Am J Physiol Gastrointest Liver Physiol. 2020;318:G1042–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1–13.

    Google Scholar 

  180. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125:926–38.

    PubMed  PubMed Central  Google Scholar 

  181. Vuong HV, Pronovost GN, Williams DW, Coley EJL, Siegler EL, Qiu A, Kazantsev M, Wilson CJ, Rendon T, Hsiao EY. The maternal microbiome modulates fetal neurodevelopment in mice. Nature. 2020;586:281.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil. 2014;26:98–107.

    CAS  PubMed  Google Scholar 

  183. Hung LY, Boonma P, Unterweger P, Parathan P, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Neonatal antibiotics disrupt motility and enteric neural circuits in mouse colon. Cell Mol Gastroenterol Hepatol. 2019;8, 298–300.e296, 298.

    Google Scholar 

  184. Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via toll-like receptor 4 signaling. Gastroenterology. 2012;143(1006–1016):e1004–6.

    Google Scholar 

  185. di Giancamillo A, Vitari F, Bosi G, Savoini G, Domeneghini C. The chemical code of porcine enteric neurons and the number of enteric glial cells are altered by dietary probiotics. Neurogastroenterol Motil. 2010;22:e271–8.

    PubMed  Google Scholar 

  186. Fu M, Tam PK, Sham MH, Lui VC. Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study. Anat Embryol (Berl). 2004;208:33–41.

    CAS  PubMed  Google Scholar 

  187. Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 2005;319:367–82.

    PubMed  Google Scholar 

  188. Bhukya S, Singh S, Sarwar S, Quadri JA, Ahmed A, Rani N, Dheeraj K, Dubey A, Nag TC, Shariff A. Morphological changes of the myenteric plexus at different gut segments of human fetuses. J Histotechnol. 2021;44:150–9.

    CAS  PubMed  Google Scholar 

  189. McCann CJ, Alves MM, Brosens E, Natarajan D, Perin S, Chapman C, Hofstra RM, Burns AJ, Thapar N. Neuronal development and onset of electrical activity in the human enteric nervous system. Gastroenterology. 2019;156, 1483–1495.e1486, 1483.

    Google Scholar 

  190. Radenkovic G, Ilic I, Zivanovic D, Vlajkovic S, Petrovic V, Mitrovic O. C-kit-immunopositive interstitial cells of Cajal in human embryonal and fetal oesophagus. Cell Tissue Res. 2010;340:427–36.

    CAS  PubMed  Google Scholar 

  191. Ross MG, Nijland MJ. Development of ingestive behavior. Am J Phys. 1998;274:R879–93.

    CAS  Google Scholar 

  192. Shi L, Mao C, Zeng F, Zhu L, Xu Z. Central cholinergic mechanisms mediate swallowing, renal excretion, and c-fos expression in the ovine fetus near term. Am J Physiol Regul Integr Comp Physiol. 2009;296:R318–25.

    CAS  PubMed  Google Scholar 

  193. Jadcherla SR, Duong HQ, Hofmann C, Hoffmann R, Shaker R. Characteristics of upper oesophageal sphincter and oesophageal body during maturation in healthy human neonates compared with adults. Neurogastroenterol Motil. 2005;17:663–70.

    CAS  PubMed  Google Scholar 

  194. Omari TI, Miki K, Fraser R, Davidson G, Haslam R, Goldsworthy W, Bakewell M, Kawahara H, Dent J. Esophageal body and lower esophageal sphincter function in healthy premature infants. Gastroenterology. 1995;109:1757–64.

    CAS  PubMed  Google Scholar 

  195. Staiano A, Boccia G, Salvia G, Zappulli D, Clouse RE. Development of esophageal peristalsis in preterm and term neonates. Gastroenterology. 2007;132:1718–25.

    PubMed  Google Scholar 

  196. Omari TI, Miki K, Davidson G, Fraser R, Haslam R, Goldsworthy W, Bakewell M, Dent J. Characterisation of relaxation of the lower oesophageal sphincter in healthy premature infants. Gut. 1997;40:370–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Gupta A, Gulati P, Kim W, Fernandez S, Shaker R, Jadcherla SR. Effect of postnatal maturation on the mechanisms of esophageal propulsion in preterm human neonates: primary and secondary peristalsis. Am J Gastroenterol. 2009;104:411–9.

    PubMed  PubMed Central  Google Scholar 

  198. Jadcherla SR. Manometric evaluation of esophageal-protective reflexes in infants and children. Am J Med. 2003;115(Suppl 3A):157S–60S.

    PubMed  Google Scholar 

  199. Jadcherla SR. Upstream effect of esophageal distention: effect on airway. Curr Gastroenterol Rep. 2006;8:190–4.

    PubMed  PubMed Central  Google Scholar 

  200. Jadcherla SR, Duong HQ, Hoffmann RG, Shaker R. Esophageal body and upper esophageal sphincter motor responses to esophageal provocation during maturation in preterm newborns. J Pediatr. 2003;143:31–8.

    PubMed  Google Scholar 

  201. McNamara F, Lijowska AS, Thach BT. Spontaneous arousal activity in infants during NREM and REM sleep. J Physiol. 2002;538:263–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Jadcherla SR, Parks VN, Peng J, Dzodzomenyo S, Fernandez S, Shaker R, Splaingard M. Esophageal sensation in premature human neonates: temporal relationships and implications of aerodigestive reflexes and electrocortical arousals. Am J Physiol Gastrointest Liver Physiol. 2012b;302:G134–44.

    CAS  PubMed  Google Scholar 

  203. Jadcherla SR, Chan CY, Fernandez S, Splaingard M. Maturation of upstream and downstream esophageal reflexes in human premature neonates: the role of sleep and awake states. Am J Physiol Gastrointest Liver Physiol. 2013a;305:G649–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Hasenstab KA & Jadcherla SR. Respiratory events in infants presenting with apparent life threatening events: is there an explanation from esophageal motility? J Pediatr. 2014;165, 250–255.e251.

    Google Scholar 

  205. Jadcherla SR, Hoffmann RG, Shaker R. Effect of maturation of the magnitude of mechanosensitive and chemosensitive reflexes in the premature human esophagus. J Pediatr. 2006;149:77–82.

    PubMed  PubMed Central  Google Scholar 

  206. Qureshi A, Malkar M, Splaingard M, Khuhro A, Jadcherla S. The role of sleep in the modulation of gastroesophageal reflux and symptoms in NICU neonates. Pediatr Neurol. 2015;53:226–32.

    PubMed  PubMed Central  Google Scholar 

  207. Jadcherla SR, Shubert TR, Gulati IK, Jensen PS, Wei L, Shaker R. Upper and lower esophageal sphincter kinetics are modified during maturation: effect of pharyngeal stimulus in premature infants. Pediatr Res. 2015a;77:99–106.

    PubMed  Google Scholar 

  208. Jadcherla SR, Shubert TR, Malkar MB, Sitaram S, Moore RK, Wei L, Fernandez S, Castile RG. Gestational and postnatal modulation of esophageal sphincter reflexes in human premature neonates. Pediatr Res. 2015b;78:540–6.

    PubMed  PubMed Central  Google Scholar 

  209. Hill CD, Jadcherla SR. Esophageal mechanosensitive mechanisms are impaired in neonates with hypoxic-ischemic encephalopathy. J Pediatr. 2013;162:976–82.

    PubMed  Google Scholar 

  210. Gulati IK, Shubert TR, Sitaram S, Wei L, Jadcherla SR. Effects of birth asphyxia on the modulation of pharyngeal provocation-induced adaptive reflexes. Am J Physiol Gastrointest Liver Physiol. 2015;309:G662–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Sase M, Miwa I, Sumie M, Nakata M, Sugino N, Ross MG. Ontogeny of gastric emptying patterns in the human fetus. J Matern Fetal Neonatal Med. 2005b;17:213–7.

    PubMed  Google Scholar 

  212. Sase M, Miwa I, Sumie M, Nakata M, Sugino N, Okada K, Osa A, Miike H, Ross MG. Gastric emptying cycles in the human fetus. Am J Obstet Gynecol. 2005a;193:1000–4.

    PubMed  Google Scholar 

  213. Berseth CL. Motor function in the stomach and small intestine in the neonate. NeoReviews. 2006;7:e28–33.

    Google Scholar 

  214. Jadcherla SR, Slaughter JL, Stenger MR, Klebanoff M, Kelleher K, Gardner W. Practice variance, prevalence, and economic burden of premature infants diagnosed with GERD. Hosp Pediatr. 2013b;3:335–41.

    PubMed  PubMed Central  Google Scholar 

  215. Jadcherla SR, Gupta A, Fernandez S, Nelin LD, Castile R, Gest AL, Welty S. Spatiotemporal characteristics of acid refluxate and relationship to symptoms in premature and term infants with chronic lung disease. Am J Gastroenterol. 2008;103:720–8.

    PubMed  Google Scholar 

  216. Jadcherla SR, Peng J, Chan CY, Moore R, Wei L, Fernandez S, C DIL. Significance of gastroesophageal refluxate in relation to physical, chemical, and spatiotemporal characteristics in symptomatic intensive care unit neonates. Pediatr Res. 2011;70:192–8.

    PubMed  PubMed Central  Google Scholar 

  217. Jadcherla SR, Chan CY, Moore R, Malkar M, Timan CJ, Valentine CJ. Impact of feeding strategies on the frequency and clearance of acid and nonacid gastroesophageal reflux events in dysphagic neonates. JPEN J Parenter Enteral Nutr. 2012a;36:449–55.

    CAS  PubMed  Google Scholar 

  218. Berseth CL. Gestational evolution of small intestine motility in preterm and term infants. J Pediatr. 1989;115:646–51.

    CAS  PubMed  Google Scholar 

  219. Bisset WM, Watt JB, Rivers RP, Milla PJ. Ontogeny of fasting small intestinal motor activity in the human infant. Gut. 1988;29:483–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Jadcherla SR, Klee G, Berseth CL. Regulation of migrating motor complexes by motilin and pancreatic polypeptide in human infants. Pediatr Res. 1997;42:365–9.

    CAS  PubMed  Google Scholar 

  221. Jadcherla SR, Berseth CL. Effect of erythromycin on gastroduodenal contractile activity in developing neonates. J Pediatr Gastroenterol Nutr. 2002;34:16–22.

    CAS  PubMed  Google Scholar 

  222. Janssens J, Vantrappen G, Peeters TL. The activity front of the migrating motor complex of the human stomach but not of the small intestine is motilin-dependent. Regul Pept. 1983;6:363–9.

    CAS  PubMed  Google Scholar 

  223. Peeters TL, Depoortere I, Macielag MJ, Dharanipragada R, Marvin MS, Florance JR, Galdes A. The motilin antagonist ANQ-11125 blocks motilide-induced contractions in vitro in the rabbit. Biochem Biophys Res Commun. 1994;198:411–6.

    CAS  PubMed  Google Scholar 

  224. Peeters TL, Vantrappen G, Janssens J. Fasting plasma motilin levels are related to the interdigestive motility complex. Gastroenterology. 1980;79:716–9.

    CAS  PubMed  Google Scholar 

  225. Baker J, Berseth CL. Postnatal change in inhibitory regulation of intestinal motor activity in human and canine neonates. Pediatr Res. 1995;38:133–9.

    CAS  PubMed  Google Scholar 

  226. Morriss FH Jr, Moore M, Weisbrodt NW, West MS. Ontogenic development of gastrointestinal motility: IV. Duodenal contractions in preterm infants. Pediatrics. 1986;78:1106–13.

    PubMed  Google Scholar 

  227. Janssens J, Peeters TL, Vantrappen G, Tack J, Urbain JL, De Roo M, Muls E, Bouillon R. Improvement of gastric emptying in diabetic gastroparesis by erythromycin. Preliminary studies. N Engl J Med. 1990;322:1028–31.

    CAS  PubMed  Google Scholar 

  228. Sarna SK, Soergel KH, Koch TR, Stone JE, Wood CM, Ryan RP, Arndorfer RC, Cavanaugh JH, Nellans HN, Lee MB. Gastrointestinal motor effects of erythromycin in humans. Gastroenterology. 1991;101:1488–96.

    CAS  PubMed  Google Scholar 

  229. Tomomasa T, Kuroume T, Arai H, Wakabayashi K, Itoh Z. Erythromycin induces migrating motor complex in human gastrointestinal tract. Dig Dis Sci. 1986;31:157–61.

    CAS  PubMed  Google Scholar 

  230. Costalos C, Gounaris A, Varhalama E, Kokori F, Alexiou N, Kolovou E. Erythromycin as a prokinetic agent in preterm infants. J Pediatr Gastroenterol Nutr. 2002;34:23–5.

    CAS  PubMed  Google Scholar 

  231. Tomomasa T, Miyazaki M, Koizumi T, Kuroume T. Erythromycin increases gastric antral motility in human premature infants. Biol Neonate. 1993;63:349–52.

    CAS  PubMed  Google Scholar 

  232. ElHennawy AA, Sparks JW, Armentrout D, Huseby V, Berseth CL. Erythromycin fails to improve feeding outcome in feeding-intolerant preterm infants. J Pediatr Gastroenterol Nutr. 2003;37:281–6.

    CAS  PubMed  Google Scholar 

  233. Breuer C, Oh J, Molderings GJ, Schemann M, Kuch B, Mayatepek E, Adam R. Therapy-refractory gastrointestinal motility disorder in a child with c-kit mutations. World J Gastroenterol. 2010;16:4363–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Bettolli M, De Carli C, Jolin-Dahel K, Bailey K, Khan HF, Sweeney B, Krantis A, Staines WA, Rubin S. Colonic dysmotility in postsurgical patients with Hirschsprung's disease. Potential significance of abnormalities in the interstitial cells of Cajal and the enteric nervous system. J Pediatr Surg. 2008;43:1433–8.

    PubMed  Google Scholar 

  235. Burns AJ. Disorders of interstitial cells of Cajal. J Pediatr Gastroenterol Nutr. 2007;45(Suppl 2):S103–6.

    PubMed  Google Scholar 

  236. Isozaki K, Hirota S, Miyagawa J, Taniguchi M, Shinomura Y, Matsuzawa Y. Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterol. 1997;92:332–4.

    CAS  PubMed  Google Scholar 

  237. Kenny SE, Connell MG, Rintala RJ, Vaillant C, Edgar DH, Lloyd DA. Abnormal colonic interstitial cells of Cajal in children with anorectal malformations. J Pediatr Surg. 1998;33:130–2.

    CAS  PubMed  Google Scholar 

  238. Taguchi T, Suita S, Masumoto K, Nagasaki A. An abnormal distribution of C-kit positive cells in the normoganglionic segment can predict a poor clinical outcome in patients with Hirschsprung's disease. Eur J Pediatr Surg. 2005;15:153–8.

    CAS  PubMed  Google Scholar 

  239. Wedel T, Spiegler J, Soellner S, Roblick UJ, Schiedeck TH, Bruch HP, Krammer HJ. Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology. 2002;123:1459–67.

    PubMed  Google Scholar 

  240. Yamataka A, Ohshiro K, Kobayashi H, Lane GJ, Yamataka T, Fujiwara T, Sunagawa M, Miyano T. Abnormal distribution of intestinal pacemaker (C-KIT-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction. J Pediatr Surg. 1998;33:859–62.

    CAS  PubMed  Google Scholar 

  241. Kapur RP, Robertson SP, Hannibal MC, Finn LS, Morgan T, van Kogelenberg M, Loren DJ. Diffuse abnormal layering of small intestinal smooth muscle is present in patients with FLNA mutations and x-linked intestinal pseudo-obstruction. Am J Surg Pathol. 2010;34:1528–43.

    PubMed  Google Scholar 

  242. Angstenberger M, Wegener JW, Pichler BJ, Judenhofer MS, Feil S, Alberti S, Feil R, Nordheim A. Severe intestinal obstruction on induced smooth muscle-specific ablation of the transcription factor SRF in adult mice. Gastroenterology. 2007;133:1948–59.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Jadcherla Lab for their assistance with this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel C. Bornstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foong, J.P.P., Beckett, E.A., Young, H.M., Jadcherla, S.R., Bornstein, J.C. (2022). Development of Gut Motility. In: Faure, C., Thapar, N., Di Lorenzo, C. (eds) Pediatric Neurogastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-031-15229-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15229-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15228-3

  • Online ISBN: 978-3-031-15229-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics