Skip to main content

Cocaine as a Neurotoxin

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Cocaine is a widely abused psychostimulant drug, with sympathomimetic properties and intense euphoric effects. Cocaine and some of its toxic metabolites cross the blood-brain barrier and induce neurologic impairments, affecting primarily the prefrontal cortex and basal ganglia. This review discusses the mechanisms involved in brain dysfunction induced by cocaine, focusing on pre- and postsynaptic changes in dopaminergic and glutamatergic neurotransmission, oxidative stress, and mitochondrial dysfunction. Neurotoxic effects of combinations of cocaine with other drugs are also discussed. In summary, cocaine neurotoxicity may underlie brain dysfunction in cocaine and polydrug abusers and may predispose the brain to neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ca2+i:

Intracellular Ca2+ concentration

DAQ:

Dopamine quinone

DARPP32:

Dopamine- and cAMP-regulated neuronal phosphoprotein

DAT:

Dopamine transporter

DOPAC:

3,4-Dihydroxyphenylacetic acid

DOPAL:

3,4-Dihydroxyphenylacetaldehyde

ERK:

Extracellular signal-regulated kinase

GPx:

Glutathione peroxidase

GSH:

Reduced glutathione

H2O2:

Hydrogen peroxide

MAO:

Monoamine oxidase

MAPKK/MEK:

Mitogen-activated protein kinase kinase/extracellular signal-regulated kinase kinase

MDA:

Malondialdehyde

NMDA:

N-methyl-d-aspartate

O2•−:

Superoxide anion

•OH:

Hydroxyl radical

PARP:

Poly (ADP-ribose) polymerase

PD:

Parkinson’s disease

PKA:

Protein kinase A

PP1:

Protein phosphatase 1

Ras-GRF-1:

Ras protein-specific guanine nucleotide-releasing factor 1

SOD:

Superoxide dismutase

VMAT:

Vesicular monoamine transporter

References

  • Alvaro-Bartolome, M., La, H. R., Callado, L. F., Meana, J. J., & Garcia-Sevilla, J. A. (2011). Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats. Neuroscience, 196, 1–15.

    Article  Google Scholar 

  • Anier, K., Malinovskaja, K., Aonurm-Helm, A., Zharkovsky, A., & Kalda, A. (2010). DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology, 35(12), 2450–2461. https://doi.org/10.1038/npp.2010.128

    Article  Google Scholar 

  • Bandettini Di Poggio, A., Fornai, F., Paparelli, A., Pacini, M., Perugi, G., & Maremmani, I. (2006). Comparison between heroin and heroin-cocaine polyabusers: A psychopathological study. Annals of the New York Academy of Sciences, 1074, 438–445.

    Article  Google Scholar 

  • Bartzokis, G., Beckson, M., Wirshing, D. A., Lu, P. H., Foster, J. A., & Mintz, J. (1999). Choreoathetoid movements in cocaine dependence. Biological Psychiatry, 45, 1630–1635.

    Article  Google Scholar 

  • Bashkatova, V., Meunier, J., Vanin, A., & Maurice, T. (2006). Nitric oxide and oxidative stress in the brain of rats exposed in utero to cocaine. Annals of the New York Academy of Sciences, 1074, 632–642.

    Article  Google Scholar 

  • Benedi, J., Arroyo, R., Romero, C., Martin-Aragon, S., & Villar, A. M. (2004). Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells. Life Sciences, 75, 1263–1276.

    Article  Google Scholar 

  • Bolla, K. I., Cadet, J. L., & London, E. D. (1998). The neuropsychiatry of chronic cocaine abuse. The Journal of Neuropsychiatry and Clinical Neurosciences, 10, 280–289.

    Article  Google Scholar 

  • Bolla, K. I., Funderburk, F. R., & Cadet, J. L. (2000). Differential effects of cocaine and cocaine alcohol on neurocognitive performance. Neurology, 54, 2285–2292.

    Article  Google Scholar 

  • Boyer, F., & Dreyer, J. L. (2007). Alpha-synuclein in the nucleus accumbens induces changes in cocaine behaviour in rats. European Journal of Neuroscience, 26, 2764–2776.

    Article  Google Scholar 

  • Brami-Cherrier, K., Roze, E., Girault, J. A., Betuing, S., & Caboche, J. (2009). Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. Journal of Neurochemistry, 108, 1323–1335.

    Article  Google Scholar 

  • Brenz Verca, M. S., Bahi, A., Boyer, F., Wagner, G. C., & Dreyer, J. L. (2003). Distribution of alpha- and gamma-synucleins in the adult rat brain and their modification by high-dose cocaine treatment. European Journal of Neuroscience, 18, 1923–1938.

    Article  Google Scholar 

  • Brown, J. M., Hanson, G. R., & Fleckenstein, A. E. (2001). Regulation of the vesicular monoamine transporter-2: A novel mechanism for cocaine and other psychostimulants. Journal of Pharmacology and Experimental Therapeutics, 296, 762–767.

    Google Scholar 

  • Buttner, A., Mall, G., Penning, R., Sachs, H., & Weis, S. (2003). The neuropathology of cocaine abuse. Legal Medicine, 5(Suppl 1), S240–S242. Tokyo.

    Article  Google Scholar 

  • Callaghan, R. C., Cunningham, J. K., Sykes, J., & Kish, S. J. (2012). Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug and Alcohol Dependence, 120, 35–40.

    Article  Google Scholar 

  • Chandra, R., Engeln, M., Schiefer, C., Patton, M. H., Martin, J. A., Werner, C. T., Riggs, L. M., Francis, T. C., McGlincy, M., Evans, B., Nam, H., Das, S., Girven, K., Konkalmatt, P., Gancarz, A. M., Golden, S. A., Iñiguez, S. D., Russo, S. J., Turecki, G., Mathur, B. N., … Lobo, M. K. (2017). Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence. Neuron, 96(6), 1327–1341.e6. https://doi.org/10.1016/j.neuron.2017.11.037

    Article  Google Scholar 

  • Cornish, J. L., Lontos, J. M., Clemens, K. J., & McGregor, I. S. (2005). Cocaine and heroin (‘speedball’) self-administration: The involvement of nucleus accumbens dopamine and mu-opiate, but not delta-opiate receptors. Psychopharmacology, 180, 21–32.

    Article  Google Scholar 

  • Couper, F., & Logan, B. (2004). Drugs and human performance fact sheets. National Highway Traffic Safety Administration.

    Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., Cardoso, S. M., Borges, F., Swerdlow, R. H., Macedo, T., & de Oliveira, C. R. (2006a). Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Research, 1089, 44–54.

    Article  Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., Morgadinho, M. T., Macedo, T., & Oliveira, C. R. (2006b). Differential cytotoxic responses of PC12 cells chronically exposed to psychostimulants or to hydrogen peroxide. Toxicology, 217, 54–62.

    Article  Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., & Oliveira, C. R. (2008). Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Research Reviews, 58, 192–208.

    Article  Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., Garrido, J., Borges, F., Macedo, T., & Oliveira, C. R. (2010). Neurotoxicity of heroin-cocaine combinations in rat cortical neurons. Toxicology, 276, 11–17.

    Article  Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., & Oliveira, R. C. (2013a). Oxidative stress and drugs of abuse: An update. Mini-Reviews in Organic Chemistry, 10(4), 321–334. https://doi.org/10.2174/1570193x113106660026

  • Cunha-Oliveira, T., Silva, L., Silva, A. M., Moreno, A. J., Oliveira, C. R., & Santos, M. S. (2013b). Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria. Toxicology Letters, 219, 298–306.

    Google Scholar 

  • Devi, B. G., & Chan, A. W. (1997). Impairment of mitochondrial respiration and electron transport chain enzymes during cocaine-induced hepatic injury. Life Sciences, 60, 849–855.

    Article  Google Scholar 

  • Dey, S., Mactutus, C. F., Booze, R. M., & Snow, D. M. (2007). Cocaine exposure in vitro induces apoptosis in fetal locus coeruleus neurons by altering the Bax/Bcl-2 ratio and through caspase-3 apoptotic signaling. Neuroscience, 144, 509–521.

    Article  Google Scholar 

  • Dietrich, J. B., Poirier, R., Aunis, D., & Zwiller, J. (2004). Cocaine downregulates the expression of the mitochondrial genome in rat brain. Annals of the New York Academy of Sciences, 1025, 345–350.

    Article  Google Scholar 

  • Dietrich, J. B., Mangeol, A., Revel, M. O., Burgun, C., Aunis, D., & Zwiller, J. (2005). Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology, 48, 965–974.

    Article  Google Scholar 

  • Domingues, A., Cunha, O. T., Laco, M. L., Macedo, T. R., Oliveira, C. R., & Rego, A. C. (2006). Expression of NR1/NR2B N-methyl-D-aspartate receptors enhances heroin toxicity in HEK293 cells. Annals of the New York Academy of Sciences, 1074, 458–465.

    Article  Google Scholar 

  • European Monitoring Center for Drugs and Drug Addiction. (2008). Annual Report 2008. The state of the drugs problem in Europe.

    Google Scholar 

  • European Monitoring Center for Drugs and Drug Addiction. (2009). Polydrug use: Patterns and responses.

    Google Scholar 

  • Funakoshi, T., Furukawa, M., Aki, T., & Uemura, K. (2019). Repeated exposure of cocaine alters mitochondrial dynamics in mouse neuroblastoma Neuro2a. Neurotoxicology, 75, 70–77. https://doi.org/10.1016/j.neuro.2019.09.001

    Article  Google Scholar 

  • Garcia, R. C., Dati, L. M., Fukuda, S., Torres, L. H., Moura, S., de Carvalho, N. D., Carrettiero, D. C., Camarini, R., Levada-Pires, A. C., Yonamine, M., Negrini-Neto, O., Abdalla, F. M., Sandoval, M. R., Afeche, S. C., & Marcourakis, T. (2012). Neurotoxicity of anhydroecgonine methyl ester, a crack cocaine pyrolysis product. Toxicological Sciences, 128, 223–234.

    Article  Google Scholar 

  • Garrido, J. M., Marques, M. P., Silva, A. M., Macedo, T. R., Oliveira-Brett, A. M., & Borges, F. (2007). Spectroscopic and electrochemical studies of cocaine-opioid interactions. Analytical and Bioanalytical Chemistry, 388, 1799–1808.

    Article  Google Scholar 

  • Graham, D. G., Tiffany, S. M., Bell, W. R., Jr., & Gutknecht, W. F. (1978). Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Molecular Pharmacology, 14, 644–653.

    Google Scholar 

  • Hamilton, P. J., & Nestler, E. J. (2019). Epigenetics and addiction. Current Opinion in Neurobiology, 59, 128–136. https://doi.org/10.1016/j.conb.2019.05.005

    Article  Google Scholar 

  • Han, D. D., & Gu, H. H. (2006). Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacology, 6, 6.

    Article  Google Scholar 

  • Hastings, T. G. (2009). The role of dopamine oxidation in mitochondrial dysfunction: Implications for Parkinson’s disease. Journal of Bioenergetics and Biomembranes, 41, 469–472.

    Article  Google Scholar 

  • Hastings, T. G., Lewis, D. A., & Zigmond, M. J. (1996). Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proceedings of the National Academy of Science United States of America, 93, 1956–1961.

    Article  Google Scholar 

  • Heard, K., Palmer, R., & Zahniser, N. R. (2008). Mechanisms of acute cocaine toxicity. Open Pharmacology Journal, 2, 70–78.

    Article  Google Scholar 

  • Henry, J. (2007). Cocaine powder trail. The Biochemist, 29, 16–19.

    Article  Google Scholar 

  • Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565–598.

    Article  Google Scholar 

  • International Programme on Chemical Safety. (1999). Poisons information [Monograph]: Cocaine (PIM 139).

    Google Scholar 

  • Karch, S. B. (2009). Karch’s pathology of drug abuse. CRC Press.

    Google Scholar 

  • Kovacic, P. (2005). Role of oxidative metabolites of cocaine in toxicity and addiction: Oxidative stress and electron transfer. Medical Hypotheses, 64, 350–356.

    Article  Google Scholar 

  • Langendorf, F. G., Anderson, D. C., Tupper, D. E., Rottenberg, D. A., & Weisman, I. D. (1996). Brain atrophy and chronic cocaine abuse: Background and work in progress. NIDA Research Monograph, 163, 27–42.

    Google Scholar 

  • Lehrmann, E., Oyler, J., Vawter, M. P., Hyde, T. M., Kolachana, B., Kleinman, J. E., Huestis, M. A., Becker, K. G., & Freed, W. J. (2003). Transcriptional profiling in the human prefrontal cortex: Evidence for two activational states associated with cocaine abuse. The Pharmacogenomics Journal, 3, 27–40.

    Article  Google Scholar 

  • Leri, F., Bruneau, J., & Stewart, J. (2003). Understanding polydrug use: Review of heroin and cocaine co-use. Addiction, 98, 7–22.

    Article  Google Scholar 

  • Lipton, J. W., Gyawali, S., Borys, E. D., Koprich, J. B., Ptaszny, M., & McGuire, S. O. (2003). Prenatal cocaine administration increases glutathione and alpha-tocopherol oxidation in fetal rat brain. Brain Research. Developmental Brain Research, 147, 77–84.

    Article  Google Scholar 

  • Liu, X. Y., Chu, X. P., Mao, L. M., Wang, M., Lan, H. X., Li, M. H., Zhang, G. C., Parelkar, N. K., Fibuch, E. E., Haines, M., Neve, K. A., Liu, F., Xiong, Z. G., & Wang, J. Q. (2006). Modulation of D2R-NR2B interactions in response to cocaine. Neuron, 52, 897–909.

    Article  Google Scholar 

  • Macedo, D. S., de Vasconcelos, S. M., dos Santos, R. S., Aguiar, L. M., Lima, V. T., Viana, G. S., & de Sousa, F. C. (2005). Cocaine alters catalase activity in prefrontal cortex and striatum of mice. Neuroscience Letters, 387, 53–56.

    Article  Google Scholar 

  • Majewska, M. D. (1996). Cocaine addiction as a neurological disorder: Implications for treatment. NIDA Research Monograph, 163, 1–26.

    Google Scholar 

  • Marchitti, S. A., Deitrich, R. A., & Vasiliou, V. (2007). Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: The role of aldehyde dehydrogenase. Pharmacological Reviews, 59, 125–150.

    Article  Google Scholar 

  • Mash, D. C., Ouyang, Q., Pablo, J., Basile, M., Izenwasser, S., Lieberman, A., & Perrin, R. J. (2003). Cocaine abusers have an overexpression of alpha-synuclein in dopamine neurons. Journal of Neuroscience, 23, 2564–2571.

    Article  Google Scholar 

  • Mash, D. C., Adi, N., Duque, L., Pablo, J., Kumar, M., & Ervin, F. R. (2008). Alpha synuclein protein levels are increased in serum from recently abstinent cocaine abusers. Drug and Alcohol Dependence, 94, 246–250.

    Article  Google Scholar 

  • Maze, I., Covington, H. E., 3rd, Dietz, D. M., LaPlant, Q., Renthal, W., Russo, S. J., Mechanic, M., Mouzon, E., Neve, R. L., Haggarty, S. J., Ren, Y., Sampath, S. C., Hurd, Y. L., Greengard, P., Tarakhovsky, A., Schaefer, A., & Nestler, E. J. (2010). Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science, 327(5962), 213–216. https://doi.org/10.1126/science.1179438

    Article  Google Scholar 

  • Muriach, M., Lopez-Pedrajas, R., Barcia, J. M., Sanchez-Villarejo, M. V., Almansa, I., & Romero, F. J. (2010). Cocaine causes memory and learning impairments in rats: Involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. Journal of Neurochemistry, 114, 675–684.

    Article  Google Scholar 

  • Nakano, T., Doi, T., Yoshimoto, J., & Doya, K. (2010). A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Computational Biology, 6, e1000670.

    Article  Google Scholar 

  • Nassogne, M. C., Louahed, J., Evrard, P., & Courtoy, P. J. (1997). Cocaine induces apoptosis in cortical neurons of fetal mice. Journal of Neurochemistry, 68, 2442–2450.

    Article  Google Scholar 

  • Numa, R., Kohen, R., Poltyrev, T., & Yaka, R. (2008). Tempol diminishes cocaine-induced oxidative damage and attenuates the development and expression of behavioral sensitization. Neuroscience, 155, 649–658.

    Article  Google Scholar 

  • Oliveira, M. T., Rego, A. C., Morgadinho, M. T., Macedo, T. R., & Oliveira, C. R. (2002). Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Annals of the New York Academy of Sciences, 965, 487–496.

    Article  Google Scholar 

  • Olsen, G. D. (1995). Potential mechanisms of cocaine-induced developmental neurotoxicity: A minireview. Neurotoxicology, 16, 159–167.

    Google Scholar 

  • Pascoli, V., Besnard, A., Herve, D., Pages, C., Heck, N., Girault, J. A., Caboche, J., & Vanhoutte, P. (2011). Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biological Psychiatry, 69, 218–227.

    Article  Google Scholar 

  • Perfeito, R., Cunha-Oliveira, T., & Rego, A. C. (2012). Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease – Resemblance to the effect of amphetamine drugs of abuse. Free Radical Biology and Medicine, 53, 1791–1806.

    Article  Google Scholar 

  • Periyasamy, P., Liao, K., Kook, Y. H., Niu, F., Callen, S. E., Guo, M. L., & Buch, S. (2018). Cocaine-mediated downregulation of miR-124 activates microglia by targeting KLF4 and TLR4 signaling. Molecular Neurobiology, 55(4), 3196–3210. https://doi.org/10.1007/s12035-017-0584-5

    Article  Google Scholar 

  • Pomierny-Chamiolo, L., Moniczewski, A., Wydra, K., Suder, A., & Filip, M. (2012). Oxidative stress biomarkers in some rat brain structures and peripheral organs underwent cocaine. Neurotoxicity Research, 23, 92–102.

    Article  Google Scholar 

  • Poon, H. F., Abdullah, L., Mullan, M. A., Mullan, M. J., & Crawford, F. C. (2007). Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells. Neurochemistry International, 50, 69–73.

    Article  Google Scholar 

  • Qin, Y., Ouyang, Q., Pablo, J., & Mash, D. C. (2005). Cocaine abuse elevates alpha-synuclein and dopamine transporter levels in the human striatum. Neuroreport, 16, 1489–1493.

    Article  Google Scholar 

  • Ranaldi, R., & Munn, E. (1998). Polydrug self-administration in rats: Cocaine-heroin is more rewarding than cocaine-alone. Neuroreport, 9, 2463–2466.

    Article  Google Scholar 

  • Rego, A. C., & Oliveira, C. R. (2003). Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochemical Research, 28, 1563–1574.

    Article  Google Scholar 

  • Ren, Z., Sun, W. L., Jiao, H., Zhang, D., Kong, H., Wang, X., & Xu, M. (2010). Dopamine D1 and N-methyl-D-aspartate receptors and extracellular signal-regulated kinase mediate neuronal morphological changes induced by repeated cocaine administration. Neuroscience, 168, 48–60.

    Article  Google Scholar 

  • Roussotte, F., Soderberg, L., & Sowell, E. (2010). Structural, metabolic, and functional brain abnormalities as a result of prenatal exposure to drugs of abuse: Evidence from neuroimaging. Neuropsychology Review, 20, 376–397.

    Article  Google Scholar 

  • Rowlett, J. K., & Woolverton, W. L. (1997). Self-administration of cocaine and heroin combinations by rhesus monkeys responding under a progressive-ratio schedule. Psychopharmacology, 133, 363–371.

    Article  Google Scholar 

  • Sadakierska-Chudy, A., Kotarska, A., Frankowska, M., JastrzÄ™bska, J., Wydra, K., Miszkiel, J., PrzegaliÅ„ski, E., & Filip, M. (2017). The alterations in mitochondrial DNA copy number and nuclear-encoded mitochondrial genes in rat brain structures after cocaine self-administration. Molecular Neurobiology, 54(9), 7460–7470. https://doi.org/10.1007/s12035-016-0153-3

    Article  Google Scholar 

  • Scheggi, S., Mangiavacchi, S., Masi, F., Gambarana, C., Tagliamonte, A., & De Montis, M. G. (2002). Dizocilpine infusion has a different effect in the development of morphine and cocaine sensitization: Behavioral and neurochemical aspects. Neuroscience, 109, 267–274.

    Article  Google Scholar 

  • Schilstrom, B., Yaka, R., Argilli, E., Suvarna, N., Schumann, J., Chen, B. T., Carman, M., Singh, V., Mailliard, W. S., Ron, D., & Bonci, A. (2006). Cocaine enhances NMDA receptor-mediated currents in ventral tegmental area cells via dopamine D5 receptor-dependent redistribution of NMDA receptors. Journal of Neuroscience, 26, 8549–8558.

    Article  Google Scholar 

  • Smith, J. E., Co, C., Coller, M. D., Hemby, S. E., & Martin, T. J. (2006). Self-administered heroin and cocaine combinations in the rat: Additive reinforcing effects-supra-additive effects on nucleus accumbens extracellular dopamine. Neuropsychopharmacology, 31, 139–150.

    Article  Google Scholar 

  • Sun, W. L., Zhou, L., Hazim, R., Quinones-Jenab, V., & Jenab, S. (2008). Effects of dopamine and NMDA receptors on cocaine-induced Fos expression in the striatum of Fischer rats. Brain Research, 1243, 1–9.

    Article  Google Scholar 

  • Swant, J., Goodwin, J. S., North, A., Ali, A. A., Gamble-George, J., Chirwa, S., & Khoshbouei, H. (2011). Alpha-Synuclein stimulates a dopamine transporter-dependent chloride current and modulates the activity of the transporter. Journal of Biological Chemistry, 286, 43933–43943.

    Article  Google Scholar 

  • Thangaraj, A., Periyasamy, P., Guo, M. L., Chivero, E. T., Callen, S., & Buch, S. (2020). Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy, 16(2), 289–312. https://doi.org/10.1080/15548627.2019.1607686

    Article  Google Scholar 

  • Tzschentke, T. M., & Schmidt, W. J. (2003). Glutamatergic mechanisms in addiction. Molecular Psychiatry, 8, 373–382.

    Article  Google Scholar 

  • United Nations Office on Drugs and Crime. (2020). World drug report 2020. https://wdr.unodc.org/uploads/wdr2020/documents/WDR20_Booklet_2.pdf

  • Uys, J. D., & Reissner, K. J. (2011). Glutamatergic neuroplasticity in cocaine addiction. Progress in Molecular Biology and Translational Science, 98, 367–400.

    Article  Google Scholar 

  • Uys, J. D., Knackstedt, L., Hurt, P., Tew, K. D., Manevich, Y., Hutchens, S., Townsend, D. M., & Kalivas, P. W. (2011). Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity. Neuropsychopharmacology, 36, 2551–2560.

    Article  Google Scholar 

  • Uys, J. D., Mulholland, P. J., & Townsend, D. M. (2014). Glutathione and redox signaling in substance abuse. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 68(6), 799–807. https://doi.org/10.1016/j.biopha.2014.06.001

    Article  Google Scholar 

  • Vergeade, A., Mulder, P., Vendeville-Dehaudt, C., Estour, F., Fortin, D., Ventura-Clapier, R., Thuillez, C., & Monteil, C. (2010). Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: Prevention by the targeted antioxidant MitoQ. Free Radical Biology & Medicine, 49, 748–756.

    Article  Google Scholar 

  • Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: Insights from imaging studies. The Journal of Clinical Investigation, 111, 1444–1451.

    Article  Google Scholar 

  • Wickens, J. R., Horvitz, J. C., Costa, R. M., & Killcross, S. (2007). Dopaminergic mechanisms in actions and habits. Journal of Neuroscience, 27, 8181–8183.

    Article  Google Scholar 

  • Williams, J. M., & Steketee, J. D. (2004). Cocaine increases medial prefrontal cortical glutamate overflow in cocaine-sensitized rats: A time course study. European Journal of Neuroscience, 20, 1639–1646.

    Article  Google Scholar 

  • Xiao, D., & Zhang, L. (2008). Upregulation of Bax and Bcl-2 following prenatal cocaine exposure induces apoptosis in fetal rat brain. International Journal of Medical Sciences, 5, 295–302.

    Article  Google Scholar 

  • Youdim, M. B., Edmondson, D., & Tipton, K. F. (2006). The therapeutic potential of monoamine oxidase inhibitors. Nature Reviews Neuroscience, 7, 295–309.

    Article  Google Scholar 

Download references

Acknowledgments

The authors’ laboratories are funded by the European Regional Development Fund (ERDF), through the COMPETE 2020-Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia – under projects PTDC/BTM-SAL/29297/2017-POCI-01-0145-FEDER-029297, DL 57/2016/CP1448/CT0016, LA/P/0058/2020, and UIDB/04539/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Cunha-Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cunha-Oliveira, T., Rego, A.C., Oliveira, C.R. (2022). Cocaine as a Neurotoxin. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_81

Download citation

Publish with us

Policies and ethics