Skip to main content

Minimal Trap Spaces of Logical Models are Maximal Siphons of Their Petri Net Encoding

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13447))

Abstract

Boolean modelling of gene regulation but also of post-transcriptomic systems has proven over the years that it can bring powerful analyses and corresponding insight to the many cases where precise biological data is not sufficiently available to build a detailed quantitative model. This is even more true for very large models where such data is frequently missing and led to a constant increase in size of logical models à la Thomas. Besides simulation, the analysis of such models is mostly based on attractor computation, since those correspond roughly to observable biological phenotypes. The recent use of trap spaces made a real breakthrough in that field allowing to consider medium-sized models that used to be out of reach. However, with the continuing increase in model-size, the state-of-the-art computation of minimal trap spaces based on prime-implicants shows its limits as there can be a huge number of implicants.

In this article we present an alternative method to compute minimal trap spaces, and hence complex attractors, of a Boolean model. It replaces the need for prime-implicants by a completely different technique, namely the enumeration of maximal siphons in the Petri net encoding of the original model. After some technical preliminaries, we expose the concrete need for such a method and detail its implementation using Answer Set Programming. We then demonstrate its efficiency and compare it to implicant-based methods on some large Boolean models from the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/bnediction/mpbn.

  2. 2.

    https://www.pnml.org/.

  3. 3.

    http://www.colomoto.org/biolqm/.

  4. 4.

    http://colomoto.org/.

  5. 5.

    https://github.com/hklarner/pyboolnet/tree/master/pyboolnet/repository.

References

  1. Aghamiri, S.S., et al.: Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics 36(16), 4473–4482 (2020). https://doi.org/10.1093/bioinformatics/btaa484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Angeli, D., Leenheer, P.D., Sontag, E.: A Petri net approach to persistence analysis in chemical reaction networks. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, SI. (eds.) Biology and Control Theory: Current Challenges, pp. 181–216. Springer (2007). https://doi.org/10.1007/978-3-540-71988-5_9

  3. Angeli, D., Leenheer, P.D., Sontag, E.D.: Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. SIAM J. Appl. Math. 71(1), 128–146 (2011). https://doi.org/10.1137/090779401

    Article  CAS  Google Scholar 

  4. Blätke, M.A., Heiner, M., Marwan, W.: Biomodel engineering with Petri nets. In: Algebraic and Discrete Mathematical Methods for Modern Biology, pp. 141–192. Elsevier (2015). https://doi.org/10.1016/B978-0-12-801213-0.00007-1

  5. Chaouiya, C., Bérenguier, D., Keating, S.M., Naldi, A., et al.: SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst. Biol. 7, 135 (2013). https://doi.org/10.1186/1752-0509-7-135

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-valued logical regulatory graphs. Nat. Comput. 10(2), 727–750 (2011). https://doi.org/10.1007/s11047-010-9178-0

    Article  Google Scholar 

  7. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks with GINsim. In: van Helden, J., Toussaint, A., Thieffry, D. (eds.) Bacterial Molecular Networks, pp. 463–479. Springer (2012). https://doi.org/10.1007/978-1-61779-361-5_23

  8. Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative modelling of genetic networks: from logical regulatory graphs to standard petri nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 137–156. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27793-4_9

    Chapter  Google Scholar 

  9. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization of reachable attractors using petri net unfoldings. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12982-2_10

    Chapter  Google Scholar 

  10. Chatain, T., Haar, S., Kolčák, J., Paulevé, L., Thakkar, A.: Concurrency in Boolean networks. Nat. Comput. 19(1), 91–109 (2019). https://doi.org/10.1007/s11047-019-09748-4

    Article  Google Scholar 

  11. Chevalier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.Y.: Synthesis of Boolean networks from biological dynamical constraints using answer-set programming. In: 31st IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019, Portland, OR, USA, 4–6 November 2019, pp. 34–41. IEEE (2019). https://doi.org/10.1109/ICTAI.2019.00014

  12. Chevalier, S., Noël, V., Calzone, L., Zinovyev, A., Paulevé, L.: Synthesis and simulation of ensembles of boolean networks for cell fate decision. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 193–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_11

    Chapter  Google Scholar 

  13. Corral-Jara, K.F., et al.: Interplay between SMAD2 and STAT5A is a critical determinant of IL-17A/IL-17F differential expression. Mol. Biomed. 2(1), 1–16 (2021). https://doi.org/10.1186/s43556-021-00034-3

    Article  Google Scholar 

  14. Degrand, É., Fages, F., Soliman, S.: Graphical conditions for rate independence in chemical reaction networks. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 61–78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_4

    Chapter  Google Scholar 

  15. Didier, G., Remy, E., Chaouiya, C.: Mapping multivalued onto Boolean dynamics. J. Theor. Biol. 270(1), 177–184 (2011). https://doi.org/10.1016/j.jtbi.2010.09.017

    Article  PubMed  Google Scholar 

  16. Cifuentes Fontanals, L., Tonello, E., Siebert, H.: Control strategy identification via trap spaces in Boolean networks. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 159–175. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_9

    Chapter  Google Scholar 

  17. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011). https://doi.org/10.3233/AIC-2011-0491

    Article  Google Scholar 

  18. Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39(1), 103–129 (1973). https://doi.org/10.1016/0022-5193(73)90208-7

    Article  CAS  PubMed  Google Scholar 

  19. Guberman, E., Sherief, H., Regan, E.R.: Boolean model of anchorage dependence and contact inhibition points to coordinated inhibition but semi-independent induction of proliferation and migration. Comput. Struct. Biotechnol. J. 18, 2145–2165 (2020). https://doi.org/10.1016/j.csbj.2020.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Helikar, T., et al.: A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. PloS One 8(4), e61757 (2013). https://doi.org/10.1371/journal.pone.0061757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helikar, T., Konvalina, J., Heidel, J., Rogers, J.A.: Emergent decision-making in biological signal transduction networks. Proc. National Acad. Sci. 105(6), 1913–1918 (2008). https://doi.org/10.1073/pnas.0705088105

    Article  Google Scholar 

  22. Helikar, T., Kowal, B.M., McClenathan, S., Bruckner, M., et al.: The Cell Collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol. 6, 96 (2012). https://doi.org/10.1186/1752-0509-6-96

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hernandez, C., Thomas-Chollier, M., Naldi, A., Thieffry, D.: Computational verification of large logical models-application to the prediction of T cell response to checkpoint inhibitors. Front. Physiol. 1154 (2020). https://doi.org/10.3389/fphys.2020.558606

  24. Keating, S.M., Waltemath, D., König, M., Zhang, F., et al.: SBML Level 3: an extensible format for the exchange and reuse of biological models. Mol. Syst. Biol. 16(8), e9110 (2020). https://doi.org/10.15252/msb.20199110

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim, J.R., Kim, J., Kwon, Y.K., Lee, H.Y., Heslop-Harrison, P., Cho, K.H.: Reduction of complex signaling networks to a representative kernel. Sci. Signal. 4(175), ra35 (2011). https://doi.org/10.1126/scisignal.2001390

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J., Yi, G.S.: RMOD: a tool for regulatory motif detection in signaling network. PloS One 8(7), e68407 (2013). https://doi.org/10.1371/journal.pone.0068407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal trap spaces of Boolean networks. Nat. Comput. 14(4), 535–544 (2015). https://doi.org/10.1007/s11047-015-9520-7

    Article  Google Scholar 

  28. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis and visualization of Boolean networks. Bioinformatics 33(5), 770–772 (2017). https://doi.org/10.1093/bioinformatics/btw682

    Article  CAS  PubMed  Google Scholar 

  29. Kwon, Y.: Properties of Boolean dynamics by node classification using feedback loops in a network. BMC Syst. Biol. 10, 83 (2016). https://doi.org/10.1186/s12918-016-0322-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee, D., Cho, K.H.: Signal flow control of complex signaling networks. Sci. Rep. 9(1), 1–18 (2019). https://doi.org/10.1038/s41598-019-50790-0

    Article  CAS  Google Scholar 

  31. Liu, G., Barkaoui, K.: A survey of siphons in Petri nets. Inf. Sci. 363, 198–220 (2016). https://doi.org/10.1016/j.ins.2015.08.037

    Article  Google Scholar 

  32. Montagud, A., et al.: Patient-specific Boolean models of signaling networks guide personalized treatments. BioRxiv (2021). https://doi.org/10.1101/2021.07.28.454126

  33. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989). https://doi.org/10.1109/5.24143

    Article  Google Scholar 

  34. Müssel, C., Hopfensitz, M., Kestler, H.A.: BoolNet - an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10), 1378–1380 (2010). https://doi.org/10.1093/bioinformatics/btq124

    Article  CAS  PubMed  Google Scholar 

  35. Nabli, F., Martinez, T., Fages, F., Soliman, S.: On enumerating minimal siphons in Petri nets using CLP and SAT solvers: theoretical and practical complexity. Constraints 21(2), 251–276 (2015). https://doi.org/10.1007/s10601-015-9190-1

    Article  Google Scholar 

  36. Naldi, A., et al.: Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics 31(7), 1154–1159 (2015). https://doi.org/10.1093/bioinformatics/btv013

    Article  CAS  PubMed  Google Scholar 

  37. Noual, M., Regnault, D., Sené, S.: About non-monotony in Boolean automata networks. Theor. Comput. Sci. 504, 12–25 (2013). https://doi.org/10.1016/j.tcs.2012.05.034

    Article  Google Scholar 

  38. Oanea, O., Wimmel, H., Wolf, K.: New algorithms for deciding the siphon-trap property. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 267–286. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7_16

    Chapter  Google Scholar 

  39. Ogishima, S., et al.: AlzPathway, an updated map of curated signaling pathways: towards deciphering Alzheimer’s disease pathogenesis. In: Castrillo, J.I., Oliver, S.G. (eds.) Systems Biology of Alzheimer’s Disease. MMB, vol. 1303, pp. 423–432. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-2627-5_25

    Chapter  Google Scholar 

  40. Ostaszewski, M., Niarakis, A., Mazein, A., Kuperstein, I., Phair, R., Orta-Resendiz, A., Singh, V., Aghamiri, S.S., Acencio, M.L., Glaab, E., et al.: COVID19 disease map, a computational knowledge repository of virus-host interaction mechanisms. Mol. Syst. Biol. 17(10), e10387 (2021). https://doi.org/10.15252/msb.202110387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract, and scalable modeling of biological networks. Nat. Commun. 11(1), 1–7 (2020). https://doi.org/10.1038/s41467-020-18112-5

    Article  CAS  Google Scholar 

  42. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Hoboken (1981)

    Google Scholar 

  43. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: Hunter, L., Searls, D.B., Shavlik, J.W. (eds.) Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology, Bethesda, MD, USA, July 1993, pp. 328–336. AAAI (1993). http://www.aaai.org/Library/ISMB/1993/ismb93-038.php

  44. Rodríguez-Jorge, O., et al.: Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4+ T cell activation. Sci. Signal. 12(577), eaar3641 (2019). https://doi.org/10.1126/scisignal.aar3641

    Article  PubMed  Google Scholar 

  45. Singh, V., et al.: Computational systems biology approach for the study of rheumatoid arthritis: from a molecular map to a dynamical model. Genom. Comput. Biol. 4(1), e100050 (2018). https://doi.org/10.18547/gcb.2018.vol4.iss1.e100050

    Article  PubMed  Google Scholar 

  46. Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42, 565–583 (1973). https://doi.org/10.1016/0022-5193(73)90247-6

    Article  Google Scholar 

  47. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153(1), 1–23 (1991). https://doi.org/10.1016/S0022-5193(05)80350-9

    Article  Google Scholar 

  48. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)

    Google Scholar 

  49. Tsirvouli, E., Touré, V., Niederdorfer, B., Vázquez, M., Flobak, Å., Kuiper, M.: A middle-out modeling strategy to extend a colon cancer logical model improves drug synergy predictions in epithelial-derived cancer cell lines. Front. Mol. Biosci. 7, 502573 (2020). https://doi.org/10.3389/fmolb.2020.502573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, R.S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012). https://doi.org/10.1088/1478-3975/9/5/055001

    Article  CAS  PubMed  Google Scholar 

  51. Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. Silico Biol. 3(3), 323–345 (2003). http://content.iospress.com/articles/in-silico-biology/isb00100

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Soliman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trinh, VG., Benhamou, B., Hiraishi, K., Soliman, S. (2022). Minimal Trap Spaces of Logical Models are Maximal Siphons of Their Petri Net Encoding. In: Petre, I., Păun, A. (eds) Computational Methods in Systems Biology. CMSB 2022. Lecture Notes in Computer Science(), vol 13447. Springer, Cham. https://doi.org/10.1007/978-3-031-15034-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15034-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15033-3

  • Online ISBN: 978-3-031-15034-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics