Skip to main content

Unsupervised Prediction Method for Drug-Target Interactions Based on Structural Similarity

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Abstract

Predicting drug-target interactions are important in drug discovery and drug repositioning. Discovering drug-target interactions by computational method still has great potential and advantages in many aspects, such as focusing on interested drug or target proteins. This paper proposes an unsupervised clustering model (OpBGM) based on structural similarity, which combines OPTICS and BGMM algorithms. First, the required PDB files are obtained. Then, the interaction pair is defined and extracted from each PDB file. The interactions are encoded and dimensionally reduced using PCA algorithm. OPTICS is used to detect and remove noise, and BGMM is used to extract significant interaction pairs. Potential binding sites are discovered through interaction pairs and drug similarities discovered. In addition, a target protein is randomly selected to dock with each drug in one cluster. The number of clusters with the average affinity less than −6 kcal/mol accounts for 82.73% of the total number of clusters, which shows the feasibility of proposed prediction method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Itoh, Y., Nakashima, Y., Tsukamoto, S., et al.: N+-C-H···O Hydrogen bonds in protein-ligand complexes. Sci. Rep. 9(1), 767 (2019)

    Article  Google Scholar 

  2. Kumar, K., Woo, S.M., Siu, T., et al.: Cation–π interactions in protein–ligand binding: theory and data-mining reveal different roles for lysine and arginine. Chem. Sci. 9(10), 2655–2665 (2018)

    Article  Google Scholar 

  3. Lin, X.L., Zhang, X.L.: Prediction of hot regions in PPIs based on improved local community structure detecting. IEEE/ACM Trans. Comput. Biology Bioinf. 15(5), 1470–1479 (2018)

    Article  Google Scholar 

  4. Lin, X.L., Zhang, X.L., Xu, X.: Efficient classification of hot spots and hub protein interfaces by recursive feature elimination and gradient boosting. IEEE/ACM Trans. Comput. Biology Bioinf. 17(5), 1525–1534 (2020)

    Article  Google Scholar 

  5. Driver, M.D., Williamson, M.J., Cook, J.L., et al.: Functional group interaction profiles: a general treatment of solvent effects on non-covalent interactions. Chem. Sci. 11(17), 4456–4466 (2020)

    Article  Google Scholar 

  6. Basith, S., Cui, M., Macalino, S., et al.: Exploring G Protein-Coupled Receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. Front. Pharmacol. 9, 128 (2018)

    Article  Google Scholar 

  7. Warner, K.D., Hajdin, C.E., Weeks, K.M.: Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17(8), 547–558 (2018)

    Article  Google Scholar 

  8. Hwang, H., Dey, F., Petrey, D., et al.: Structure-based prediction of ligand–protein interactions on a genome-wide scale. Proc. Natl. Acad. Sci. 114(52), 13685–13690 (2017)

    Article  Google Scholar 

  9. Karasev, D., Sobolev, B., Lagunin, A., et al.: Prediction of protein-ligand interaction based on the positional similarity scores derived from amino acid sequences. Int. J. Mol. Sci. 21(1), 24 (2020)

    Article  Google Scholar 

  10. Keum, J., Nam, H.: SELF-BLM: prediction of drug-target interactions via self-training SVM. PLoS ONE 12(2), e0171839 (2017)

    Article  Google Scholar 

  11. Olayan, R.S., Ashoor, H., Bajic, V.B.: DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches. Bioinformatics 34(7), 1164–1173 (2018)

    Article  Google Scholar 

  12. Verma, N., Qu, X., Trozzi, F., et al.: SSnet: a deep learning approach for protein-ligand interaction prediction. Int. J. Mol. Sci. 22(3), 1392 (2021)

    Article  Google Scholar 

  13. Hu, S., Zhang, C., Chen, P., et al.: Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks. BMC Bioinform. 20, 689 (2019)

    Article  Google Scholar 

  14. Huang, K., Xiao, C., Glass, L.M., et al.: MolTrans: molecular interaction transformer for drug–target interaction prediction. Bioinformatics 37(6), 830–836 (2021)

    Article  Google Scholar 

  15. Hameed, P.N., Verspoor, K., Kusljic, S., et al.: A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration. BMC Bioinform. 19(1), 129 (2018)

    Article  Google Scholar 

  16. Rives, A., Meier, J., Sercu, T., et al.: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. 118(15), e2016239118 (2021)

    Article  Google Scholar 

  17. Rappaport, N., Nativ, N., Stelzer, G., et al.: MalaCards: an integrated compendium for diseases and their annotation. Database 2013, bat018 (2013)

    Google Scholar 

  18. Wishart, D.S., Feunang, Y.D.,Guo, A.C., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 46(D1), D1074–D1082 (2018)

    Google Scholar 

  19. Burley, S.K., Berman, H.M., Christie, C., et al.: RCSB protein data bank: sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Sci. 27(1), 316–330 (2018)

    Article  Google Scholar 

  20. Wei, X., Wu, X., Cheng, Z., et al.: Botanical drugs: a new strategy for structure-based target prediction. Brief. Bioinform. 23(1), bbab425 (2022)

    Google Scholar 

  21. O’Boyle, N.M., Banck, M., James, C.A., et al.: Open babel: an open chemical toolbox. J. Cheminform. 3(1), 33 (2011)

    Article  Google Scholar 

  22. Bhattacharya, S., Singh, S., Kaluri, R., Maddikunta, P.K.R., et al.: A novel PCA-Firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics 9(2), 219 (2020)

    Google Scholar 

  23. Li, P., Sun, M., Wang, Z., et al.: OPTICS-based unsupervised method for flaking degree evaluation on the murals in mogao grottoes. Sci. Rep. 8(1) (2018)

    Google Scholar 

  24. Ma, Z., Lai, Y., Kleijn, W.B., et al.: Variational Bayesian learning for Dirichlet process mixture of inverted Dirichlet distributions in Non-Gaussian image feature modeling. IEEE Trans. Neural Netw. Learn. Syst. 30(2), 449–463 (2019)

    Article  MathSciNet  Google Scholar 

  25. Nguyen, N.T., Nguyen, T.H., Pham, T.N.H., et al.: Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. J. Chem. Inf. Model. 60(1), 204–211 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the members of Machine Learning and Artificial Intelligence Laboratory, School of Computer Science and Technology, Wuhan University of Science and Technology, for their helpful discussion within seminars. This work was supported by National Natural Science Foundation of China (No. 61972299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Lin, X., Hu, J., Ding, W. (2022). Unsupervised Prediction Method for Drug-Target Interactions Based on Structural Similarity. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics