Skip to main content

GATSDCD: Prediction of circRNA-Disease Associations Based on Singular Value Decomposition and Graph Attention Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

Abstract

With the deepening of research, we can find that circular RNAs (circRNAs) have important effects on many human physiological and pathological pathways. Studying the association of circRNAs with diseases not only helps to study biological processes, but also provides new directions for the diagnosis and treatment of diseases. However, it is relatively inefficient to verify the association of circRNAs with diseases only by biotechnology. This paper proposed a computational method GATSDCD based on graph attention network (GAT) and neural network (NN) to predict associations between circRNAs-diseases. In GATSDCD, it combined similarity features and semantic features of circRNAs and diseases as raw features. Then, we denoised the original features using singular value matrix decomposition to better represent circRNAs and diseases. Further, using the obtained circRNA and disease features as node attributes, a graph attention network was used to construct feature vectors in subgraphs to extract deep embedded features. Finally, a neural network was applied to make predictions about potential associations. The experimental results showed that the GATSDCD model outperforms existing methods in multiple aspects, and is an effective method to identify circRNA-disease associations. Case study also demonstrated that GATSDCD can effectively identify circRNAs associated with gastric and breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kristensen, L.S., Andersen, M.S., Stagsted, L.V., Ebbesen, K.K., Hansen, T.B., Kjems, J.: The biogenesis, biology and characterization of circular RNAs. J. Nat. Rev. Genet. 20(11), 675–691 (2019)

    Article  Google Scholar 

  2. Ye, C.Y., Chen, L., Liu, C., Zhu, Q.H., Fan, L.: Widespread noncoding circular RNA s in plants. J. New Phytol. 208(1), 88–95 (2015)

    Article  Google Scholar 

  3. Chen, L.-L.: The biogenesis and emerging roles of circular RNAs. J. Nat. Rev. Mol. Cell Bio. 17(4), 205–211 (2016)

    Article  Google Scholar 

  4. Kulcheski, F.R., Christoff, A.P., Margis, R.: Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol. 238, 42–51 (2016)

    Article  Google Scholar 

  5. Jiao, J., et al.: Development of a two-in-one integrated assay for the analysis of circRNA-microRNA interactions. Biosens. Bioelectron. 178, 113032 (2021)

    Article  Google Scholar 

  6. Zhao, Z.-J., Shen, J.: Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol. 14(5), 514–521 (2017)

    Article  Google Scholar 

  7. Qu, S., et al.: The emerging landscape of circular RNA in life processes. RNA Biol. 14(8), 992–999 (2017)

    Article  Google Scholar 

  8. Zhou, Z., Sun, B., Huang, S., Zhao, L.: Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis. 10(7), 1–13 (2019)

    Article  Google Scholar 

  9. Liang, Z.-Z., Guo, C., Zou, M.-M., Meng, P., Zhang, T.-T.: circRNA-miRNA-mRNA regulatory network in human lung cancer: An update. Cancer Cell Int. 20(1), 1–16 (2020)

    Article  Google Scholar 

  10. Wang, K., Gao, X.-Q., Wang, T., Zhou, L.-Y.: The function and therapeutic potential of circular RNA in cardiovascular diseases. Cardiovasc. Drugs and Ther., 1–18 (2021)

    Google Scholar 

  11. Lv, Y., Wang, M., Chen, M., Wang, D., Luo, M., Zeng, Q.: hsa_circ_0119412 overexpression promotes cervical cancer progression by targeting miR-217 to upregulate anterior gradient 2. J. Clin. Lab. Anal. 36, e24236 (2022)

    Article  Google Scholar 

  12. Li, Y., Chen, J., Song, S.: Circ‐OPHN1 suppresses the proliferation, migration, and invasion of trophoblast cells through mediating miR‐558/THBS2 axis. Drug Dev. Res. (2022)

    Google Scholar 

  13. Wang, S., et al.: Exosomal circRNAs as novel cancer biomarkers: Challenges and opportunities. Int. J. Biol. Sci. 17(2), 562 (2021)

    Article  Google Scholar 

  14. Glažar, P., Papavasileiou, P., Rajewsky, N.: circBase: A database for circular RNAs. RNA 20(11), 1666–1670 (2014)

    Article  Google Scholar 

  15. Dudekula, D.B., Panda, A.C., Grammatikakis, I., De, S., Abdelmohsen, K., Gorospe, M.: CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13(1), 34–42 (2016)

    Article  Google Scholar 

  16. Chen, X., Han, P., Zhou, T., Guo, X., Song, X., Li, Y.: circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep. 6(1), 1–6 (2016)

    Google Scholar 

  17. Dong, R., Ma, X.-K., Li, G.-W., Yang, L.: CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinf. 16(4), 226–233 (2018)

    Article  Google Scholar 

  18. Fan, C., Lei, X., Fang, Z., Jiang, Q., Wu, F.-X.: CircR2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases. Database 2018 (2018)

    Google Scholar 

  19. Wu, W., Ji, P., Zhao, F.: CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 21(1), 1–14 (2020)

    Article  Google Scholar 

  20. Lei, X., Fang, Z., Guo, L.: Predicting circRNA–disease associations based on improved collaboration filtering recommendation system with multiple data. Front. Genet. 10, 897 (2019)

    Article  Google Scholar 

  21. Wang, H., Tang, J., Ding, Y., Guo, F.: Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment. Briefings Bioinf. 22(5), bbaa409 (2021)

    Article  Google Scholar 

  22. Chen, Y., Wang, Y., Ding, Y., Su, X., Wang, C.: RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs. Comput. Biol. Med. 143, 105322 (2022)

    Article  Google Scholar 

  23. Niu, M., Zou, Q., Wang, C.: GMNN2CD: Identification of circRNA–disease associations based on variational inference and graph Markov neural networks. Bioinformatics 28, 2246–2253 (2022)

    Article  Google Scholar 

  24. Wei, H., Liu, B.: iCircDA-MF: Identification of circRNA-disease associations based on matrix factorization. Brief. Bioinform. 21(4), 1356–1367 (2020)

    Article  Google Scholar 

  25. Deepthi, K., Jereesh, A.: An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network. Gene 762, 145040 (2020)

    Article  Google Scholar 

  26. Li, G., Yue, Y., Liang, C., Xiao, Q., Ding, P., Luo, J.: NCPCDA: Network consistency projection for circRNA–disease association prediction. RSC Adv. 9(57), 33222–33228 (2019)

    Article  Google Scholar 

  27. Lei, X., Bian, C.: Integrating random walk with restart and k-Nearest neighbor to identify novel circRNA-disease association. Sci. Rep. 10(1), 1–9 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lowe, H.J., Barnett, G.O.: Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. JAMA 271(14), 1103–1108 (1994)

    Article  Google Scholar 

  29. Niu, M., Lin, Y., Zou, Q.: sgRNACNN: Identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks. Plant Mol. Biol. 105(4–5), 483–495 (2021). https://doi.org/10.1007/s11103-020-01102-y

    Article  Google Scholar 

  30. Ao, C., Zou, Q., Yu, L.: NmRF: Identification of multispecies RNA 2’-O-methylation modification sites from RNA sequences. Briefings Bioinf. 23(1), bbab480 (2022)

    Article  Google Scholar 

  31. Destefanis, G., Barge, M.T., Brugiapaglia, A., Tassone, S.: The use of principal component analysis (PCA) to characterize beef. Meat Sci. 56(3), 255–259 (2000)

    Article  Google Scholar 

  32. Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35(4), 551–566 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Niu, M., Zou, Q., Lin, C.: CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach. PLoS Comput. Biol. 18(1), e1009798 (2022)

    Article  Google Scholar 

  34. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S. (eds.): KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)

    Google Scholar 

  35. Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., Liu, J.: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324, 63–68 (2019)

    Article  Google Scholar 

  36. Yan, C., Wang, J., Wu, F.-X.: DWNN-RLS: Regularized least squares method for predicting circRNA-disease associations. BMC Bioinformatics 19(19), 73–81 (2018)

    Google Scholar 

  37. Zhang, H.-Y., et al.: iGRLCDA: Identifying circRNA–disease association based on graph representation learning. Briefings Bioinf. 23, bbac083 (2022). https://doi.org/10.1093/bib/bbac083

    Article  Google Scholar 

  38. Fan, C., Lei, X., Wu, F.-X.: Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks. Int. J. Biol. Sci. 14(14), 1950 (2018)

    Article  Google Scholar 

  39. Deepthi, K., Jereesh, A.: Inferring potential CircRNA–disease associations via deep autoencoder-based classification. Mol. Diagn. Ther. 25(1), 87–97 (2021)

    Article  Google Scholar 

  40. Wang, L., You, Z.-H., Huang, Y.-A., Huang, D.-S., Chan, K.C.: An efficient approach based on multi-sources information to predict circRNA–disease associations using deep convolutional neural network. Bioinformatics 36(13), 4038–4046 (2020)

    Article  Google Scholar 

  41. Hartgrink, H.H., Jansen, E.P., van Grieken, N.C., van de Velde, C.J.: Gastric cancer. The Lancet 374(9688), 477–490 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 62131004, No.61922020, No.61872114), the Sichuan Provincial Science Fund for Distinguished Young Scholars (2021JDJQ0025), and the Special Science Foundation of Quzhou (2021D004).

Author information

Authors and Affiliations

Authors

Contributions

The authors have declared no competing interests.

Corresponding author

Correspondence to Quan Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niu, M., Hesham, A.EL., Zou, Q. (2022). GATSDCD: Prediction of circRNA-Disease Associations Based on Singular Value Decomposition and Graph Attention Network. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics