Skip to main content

Plasma Therapeutic Drug Monitoring and Clinical Toxicology

  • Chapter
  • First Online:
Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology

Abstract

Therapeutic drug monitoring (TDM) is a branch of clinical pharmacology that seeks to optimize and maintain the concentration of medications within the bloodstream. The ability to predict a drug concentration within the serum or plasma following a predetermined dose is essential in treating disease; however, a given dose of a drug may not produce identical serum concentrations between patients due to variations in drug formulation, drug interactions, environmental factors, genetic variation, and renal and hepatic function. Therein lies the risk of undertreatment or overtreatment, particularly in drugs with narrow therapeutics indices. Identifying drug concentrations at steady state using proper measurement techniques specific to the drug of interest is both practical and maximizes safety and efficacy. Of note, pharmacogenetic variation in cytochrome P-450 enzymes between individuals, as well as age-related changes in drug metabolism, further complicates medication dosing. Therapeutic drug monitoring in the context of each patient serves to address these factors and requires collaboration between pharmacy, nursing, and medical teams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raber S, Simonson W. How the body manages therapeutic drugs: AN introduction to Pharmacokinetics. Lab Med. 1997;28(9):558–91.

    Article  Google Scholar 

  2. Aronson JK, Hardman M. ABC of monitoring drug therapy. measuring plasma drug concentrations. BMJ. 1992;305(6861):1078–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yip DW, Gerriets V. Penicillin. [Updated 2021 Sep 30]. In: StatPearls [Internet]. StatPearls Publishing; 2021 Jan.. https://www.ncbi.nlm.nih.gov/books/NBK554560/

  5. Cooney L, Loke YK, Golder S, et al. Overview of systematic reviews of therapeutic ranges: methodologies and recommendations for practice. BMC Med Res Methodol. 2017;17(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buclin T, Thoma Y, Widmer N, et al. The steps to therapeutic drug monitoring: a structured approach illustrated with Imatinib. Front Pharmacol. 2020;11:177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reynolds DJ, Aronson JK. ABC of monitoring drug therapy. Making the most of plasma drug concentration measurements. BMJ. 1993;306(6869):48–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neiman AB, Ruppar T, Ho M, et al. CDC grand rounds: improving medication adherence for chronic disease management – innovations and opportunities. MMWR Morb Mortal Wkly Rep. 2017;66:1248–1251.

    Google Scholar 

  9. Prien RJ. Lithium in the prophylactic treatment of affective disorders. Arch Gen Psychiatry. 1979;36(8):847–8.

    Article  CAS  PubMed  Google Scholar 

  10. Vandevelde C, Chang A, Andrews D, Riggs W, Jewesson P. Rifampin and Ansamycin interactions with Cyclosporine after renal transplantation. Pharmacotherapy. 1991;11(1):88–9.

    CAS  PubMed  Google Scholar 

  11. Gross AS. Best practice in therapeutic drug monitoring. Br J Clin Pharmacol. 1998;46(2):95–9. https://doi.org/10.1046/j.1365-2125.1998.00770.x. PubMed PMID: 9723816; PubMed Central PMCID: PMC1873661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hallare J, Gerriets V. Half Life. Treasure Island: StatPearls; 2021.

    Google Scholar 

  13. Steimer W, Muller C, Eber B. Digoxin assays: frequent, substantial, and potentially dangerous interference by spironolactone, canrenone, and other steroids. Clin Chem. 2002;48(3):507–16.

    Article  CAS  PubMed  Google Scholar 

  14. Aronson JK, Hardman M, Reynolds DJ. ABC of monitoring drug therapy. Phenytoin. BMJ. 1992;305(6863):1215–8. https://doi.org/10.1136/bmj.305.6863.1215. PubMed PMID: 1467727; PubMed Central PMCID: PMC1883800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marino M, Jamal Z, Zito PM. Pharmacodynamics. In: StatPearls; 2021. https://www.ncbi.nlm.nih.gov/pubmed/29939568.

    Google Scholar 

  16. Ganguly NK, Bano R, Seth SD. Human genome project: pharmacogenomics and drug development. Indian J Exp Biol. 2001;39(10):955–61. https://www.ncbi.nlm.nih.gov/pubmed/11883519

    CAS  PubMed  Google Scholar 

  17. Fan J, de Lannoy IA. Pharmacokinetics. Biochem Pharmacol. 2014;87(1):93–120. https://doi.org/10.1016/j.bcp.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  18. Kaur G, Grewal J, Jyoti K, Jain UK, Chandra R, Madan J. Chapter 15 - Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. In: Grumezescu AM, editor. Drug targeting and stimuli sensitive drug delivery systems. William Andrew Publishing; 2018. p. 567–626. https://doi.org/10.1016/B978-0-12-813689-8.00015-X.

    Chapter  Google Scholar 

  19. Russo H, Bres J, Duboin MP, Roquefeuil B. Pharmacokinetics of thiopental after single and multiple intravenous doses in critical care patients. Eur J Clin Pharmacol. 1995;49(1-2):127–137. https://doi.org/10.1007/BF00192371.

    Article  Google Scholar 

  20. Phang-Lyn S, Llerena VA. Biochemistry, biotransformation. In: StatPearls; 2021. https://www.ncbi.nlm.nih.gov/pubmed/31335073.

    Google Scholar 

  21. De Baerdemaeker LEC, Mortier EP, Struys MMRF. Pharmacokinetics in obese patients. Contin Educ Anaesth Crit Care Pain. 2004;4(5):152–5. https://doi.org/10.1093/bjaceaccp/mkh042.

    Article  Google Scholar 

  22. Bergadano A, Lauber R, Zbinden A, Schatzmann U, Moens Y. Blood/gas partition coefficients of halothane, isoflurane and sevoflurane in horse blood. Br J Anaesth. 2003;91(2):276–8. https://doi.org/10.1093/bja/aeg151.

    Article  CAS  PubMed  Google Scholar 

  23. Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 2003;66(7):1207–18. https://doi.org/10.1016/s0006-2952(03)00467-2.

    Article  CAS  PubMed  Google Scholar 

  24. Farzam K, Abdullah M. Acetazolamide. In: StatPearls; 2021. https://www.ncbi.nlm.nih.gov/pubmed/30335315.

    Google Scholar 

  25. Gieling RG, Parker CA, De Costa LA, Robertson N, Harris AL, Stratford IJ, Williams KJ. Inhibition of carbonic anhydrase activity modifies the toxicity of doxorubicin and melphalan in tumour cells in vitro. J Enzyme Inhib Med Chem. 2013;28(2):360–9. https://doi.org/10.3109/14756366.2012.736979.

    Article  PubMed  Google Scholar 

  26. Hsu WH, Hsiao PJ, Lin PC, Chen SC, Lee MY, Shin SJ. Effect of metformin on kidney function in patients with type 2 diabetes mellitus and moderate chronic kidney disease. Oncotarget. 2018;9(4):5416–23. https://doi.org/10.18632/oncotarget.23387

    Article  PubMed  Google Scholar 

  27. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98. https://doi.org/10.2165/11534750-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  28. Hur KY, Kim MK, Ko SH, Han M, Lee DW, Kwon HS, Committee of Clinical Practice Guidelines, K. D. A., & Committee of the Cooperative Studies, K. S. o. N. Metformin treatment for patients with diabetes and chronic kidney disease: A Korean Diabetes Association and Korean Society of nephrology consensus statement. Diabetes Metab J. 2020;44(1):3–10. https://doi.org/10.4093/dmj.2020.0004.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lynch T, Price AL. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391–6.

    PubMed  Google Scholar 

  30. Dean L. Prasugrel therapy and CYP genotype. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kane MS, Kattman BL, Malheiro AJ, editors. Medical genetics summaries; 2012b. https://www.ncbi.nlm.nih.gov/pubmed/28520385.

    Google Scholar 

  31. Dean L. Clopidogrel therapy and CYP2C19 genotype. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kane MS, Kattman BL, Malheiro AJ, editors. Medical genetics summaries; 2012a. https://www.ncbi.nlm.nih.gov/pubmed/28520346.

    Google Scholar 

  32. Herman D, Locatelli I, Grabnar I, Peternel P, Stegnar M, Mrhar A, Breskvar K, Dolzan V. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J. 2005;5(3):193–202. https://doi.org/10.1038/sj.tpj.6500308.

    Article  CAS  PubMed  Google Scholar 

  33. O'Hara K. Paediatric pharmacokinetics and drug doses. Aust Prescr. 2016;39(6):208–10. https://doi.org/10.18773/austprescr.2016.071

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu A. Minimizing medication errors in pediatric patients. US Pharm. 2019;44(4):20–3.

    Google Scholar 

  35. Klotz U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev. 2009;41(2):67–76. https://doi.org/10.1080/03602530902722679.

    Article  CAS  PubMed  Google Scholar 

  36. Fixen RD. American Geriatrics Society 2019 Updated AGS Beers Criteria(R) for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2019;67(4):674–94. https://doi.org/10.1111/jgs.15767.

    Google Scholar 

  37. Shenfield GM. Therapeutic drug monitoring beyond 2000. Br J Clin Pharmacol. 2001;52 Suppl 1(Suppl 1):3S–4S. https://doi.org/10.1046/j.1365-2125.2001.0520s1003.x.

    Article  Google Scholar 

  38. Tsunoda SM, Aweeka FT. The use of therapeutic drug monitoring to optimise immunosuppressive therapy. Clin Pharmacokinet. 1996;30(2):107–40. https://doi.org/10.2165/00003088-199630020-00003.

    Article  CAS  PubMed  Google Scholar 

  39. Akbas SH, Ozdem S, Caglar S, Tuncer M, Gurkan A, Yucetin L, Senol Y, Demirbas A, Gultekin M, Ersoy FF, Akaydin M. Effects of some hematological parameters on whole blood tacrolimus concentration measured by two immunoassay-based analytical methods. Clin Biochem. 2005;38(6):552–7. https://doi.org/10.1016/j.clinbiochem.2005.02.011.

    Article  CAS  PubMed  Google Scholar 

  40. Mathew J, Sankar P, Varacallo M. Physiology, blood plasma. [Updated 2021 Apr 28]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2021 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK531504/

  41. Uges DRA. Plasma or Serum in therapeutic drug monitoring and clinical toxicology. Pharm Weekbl. 1988;10:185–8. https://doi.org/10.1007/BF01956868.

    Article  CAS  Google Scholar 

  42. Eichorn EJ, Gheorghiade M. Digoxin. Prog Cardiovasc Dis. 2002;44(4):251–66.

    Article  Google Scholar 

  43. Virgadamo S, Charnigo R, Darrat Y, Morales G, Elayi CS. Digoxin: A systematic review in atrial fibrillation, congestive heart failure and post myocardial infarction. World J Cardiol. 2015;7(11):808–16. https://doi.org/10.4330/wjc.v7.i11.808.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tariq S, Aronow WS. Use of inotropic agents in treatment of systolic heart failure. Int J Mol Sci. 2015;16(12):29060–8. https://doi.org/10.3390/ijms161226147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aronson JK, Hardman M. ABC of monitoring drug therapy. Digoxin. BMJ (Clinical research ed). 1992;305(6862):1149–52. https://doi.org/10.1136/bmj.305.6862.1149.

    Article  CAS  Google Scholar 

  46. Pincus M. Management of digoxin toxicity. Aust Prescrib. 2016;39(1):18–20. https://doi.org/10.18773/austprescr.2016.006

    Article  Google Scholar 

  47. Rathore SS, Curtis JP, Wang Y, Bristow MR, Krumholz HM. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003;289(7):871–8. https://doi.org/10.1001/jama.289.7.871.

    Article  CAS  PubMed  Google Scholar 

  48. Gupta M, Tripp J. Phenytoin. [Updated 2021 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551520/

  49. Perucca E, Hebdige S, Frigo GM, Gatti G, Lecchini S, Crema A. Interaction between phenytoin and valproic acid: plasma protein binding and metabolic effects. Clin Pharmacol Ther. 1980;28(6):779–89. https://doi.org/10.1038/clpt.1980.235.

    Article  CAS  PubMed  Google Scholar 

  50. Craig S. Phenytoin poisoning. Neurocrit Care. 2005;3(2):161–70. https://doi.org/10.1385/NCC:3:2:161.

    Article  CAS  PubMed  Google Scholar 

  51. Iorga A, Horowitz BZ. Phenytoin toxicity. In: StatPearls. StatPearls Publishing; 2021.

    Google Scholar 

  52. Cook AM, Hatton-Kolpek J. Augmented renal clearance. Pharmacotherapy. 2019;39(3):346–54.

    Article  PubMed  Google Scholar 

  53. Shahbaz H, Gupta M. Creatinine clearance. [Updated 2021 Jul 26]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544228/

  54. Smith BS, Yogaratnam D, Levasseur-Franklin KE, Forni A, Fong J. Introduction to drug pharmacokinetics in the critically ill patient. Chest. 2012;141(5):1327–36.

    Article  CAS  PubMed  Google Scholar 

  55. Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, Neely MN, Paiva JA, Pea F, Sjovall F, Timsit JF, Udy AA, Wicha SG, Zeitlinger M, De Waele JJ, Roberts JA. Infection Section of European Society of Intensive Care Medicine (ESICM); Pharmacokinetic/pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID); Infectious Diseases Group of International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT); Infections in the ICU and Sepsis Working Group of International Society of Antimicrobial Chemotherapy (ISAC). Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med. 2020;46(6):1127–53.

    Article  PubMed  PubMed Central  Google Scholar 

  56. van Lent-Evers NA, Mathôt RA, Geus WP, van Hout BA, Vinks AA. Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit. 1999 Feb;21(1):63–73.

    Article  PubMed  Google Scholar 

  57. Lea-Henry TN, Carland JE, Stocker SL, Sevastos J, Roberts DM. Clinical Pharmacokinetics in kidney disease: fundamental principles. Clin J Am Soc Nephrol 2018 ;13(7):1085-1095.

    Google Scholar 

  58. Bland CM, Pai MP, Lodise TP. Reappraisal of contemporary Pharmacokinetic and Pharmacodynamic principles for informing aminoglycoside dosing. Pharmacotherapy. 2018;38(12):1229–38.

    Article  CAS  PubMed  Google Scholar 

  59. Wong G, Briscoe S, McWhinney B, Ally M, Ungerer J, Lipman J, Roberts JA. Therapeutic drug monitoring of β-lactam antibiotics in the critically ill: direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J Antimicrob Chemother. 2018;73(11):3087–94.

    Article  CAS  PubMed  Google Scholar 

  60. Heil EL, Nicolau DP, Farkas A, Roberts JA, Thom KA. Pharmacodynamic target Attainment for Cefepime, Meropenem, and Piperacillin-Tazobactam using a Pharmacokinetic/Pharmacodynamic-based dosing calculator in critically ill patients. Antimicrob Agents Chemother. 2018;62(9):e01008–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi S, Klotz U. Age-related changes in pharmacokinetics. Curr Drug Metab. 2011;12(7):601–10.

    Article  CAS  PubMed  Google Scholar 

  62. Johannessen Landmark C, Johannessen SI, Patsalos PN. Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects. Expert Opin Drug Metab Toxicol. 2020;16(3):227–38.

    Article  CAS  PubMed  Google Scholar 

  63. Verrotti A, Iapadre G, Di Donato G, Di Francesco L, Zagaroli L, Matricardi S, Belcastro V, Iezzi ML. Pharmacokinetic considerations for anti-epileptic drugs in children. Expert Opin Drug Metab Toxicol. 2019;15(3):199–211.

    Article  CAS  PubMed  Google Scholar 

  64. Sourbron J, Chan H, Wammes-van der Heijden EA, Klarenbeek P, Wijnen BFM, de Haan GJ, van der Kuy H, Evers S, Majoie M. Review on the relevance of therapeutic drug monitoring of levetiracetam. Seizure. 2018;62:131–5.

    Article  PubMed  Google Scholar 

  65. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E. Antiepileptic drugs--best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia. 2008;49(7):1239–76.

    Article  CAS  PubMed  Google Scholar 

  66. Ehren R, Schijvens AM, Hackl A, Schreuder MF, Weber LT. Therapeutic drug monitoring of mycophenolate mofetil in pediatric patients: novel techniques and current opinion. Expert Opin Drug Metab Toxicol. 2021;17(2):201–13.

    Article  CAS  PubMed  Google Scholar 

  67. Zeng L, Blair EY, Nath CE, Shaw PJ, Earl JW, Stephen K, Montgomery K, Coakley JC, Hodson E, Stormon M, McLachlan AJ. Population pharmacokinetics of mycophenolic acid in children and young people undergoing blood or marrow and solid organ transplantation. Br J Clin Pharmacol. 2010;70(4):567–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith BS, Yogaratnam D, Levasseur-Franklin KE, Forni A, Fong J. Introduction to drug pharmacokinetics in the critically ill patient. Chest. 2012 May;141(5):1327-1336.18. Rosansky SJ, Schell J, Shega J, Scherer J, Jacobs L, Couchoud C, Crews D, McNabney M. Treatment decisions for older adults with advanced chronic kidney disease. BMC Nephrol. 2017 Jun 19;18(1):200. Nephrol Ther. 2017;18(1):200.

    Google Scholar 

  69. Zhang Y, Wang T, Zhang D, You H, Dong Y, Liu Y, Du Q, Sun D, Zhang T, Dong Y. Therapeutic drug monitoring coupled with Bayesian forecasting could prevent vancomycin-associated nephrotoxicity in renal insufficiency patients: a prospective study and pharmacoeconomic analysis. Ther Drug Monit. 2020;42(4):600–9.

    Article  CAS  PubMed  Google Scholar 

  70. Taylor ME, Allon M. Practical vancomycin dosing in hemodialysis patients in the era of emerging vancomycin resistance: a single-center experience. Am J Kidney Dis. 2010;55(6):1163–5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Crew P, Heintz SJ, Heintz BH. Vancomycin dosing and monitoring for patients with end-stage renal disease receiving intermittent hemodialysis. Am J Health Syst Pharm. 2015;72(21):1856–64.

    Article  CAS  PubMed  Google Scholar 

  72. Oda K, Jono H, Nosaka K, Saito H. Reduced nephrotoxicity with vancomycin therapeutic drug monitoring guided by area under the concentration-time curve against a trough 15-20 μg/mL concentration. Int J Antimicrob Agents. 2020;56(4):106109.

    Article  CAS  PubMed  Google Scholar 

  73. Liu L, Pang SK. An integrated approach to model hepatic drug clearance. Eur J Pharm Sci. 2006;29:215–30.

    Article  CAS  PubMed  Google Scholar 

  74. Ahn J, Ahn J, Yoon S, Yoon SN, Son M, Oh J. Human three-dimensional in vitro model of hepatic zonation to predict zonal hepatotoxicity. J Biol Eng. 2019;13(22):1–15.

    Google Scholar 

  75. Wei Y, Wang YG, Jia Y, Li L, Yoon J, Zhang S, Wang Z, Zhang Y, Zhu M, Sharma T, Lin Y, Hsieh M, Albrecht J, Le PT, Rosen CJ, Wang T, Zhu H. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science. 2021;371(6532):1–10.

    Google Scholar 

  76. Pang KS, Yang QJ, Noh K. Unequivocal evidence supporting the segregated flow intestinal model that discriminates intestine versus liver first-pass removal with PBPK modeling. Biopharm Drug Dispos. 2017;38:231–50.

    Article  CAS  PubMed  Google Scholar 

  77. Pang KS, Durk MR. Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism and excretion. J Pharmacokinet Pharmacodyn. 2010;37:591–615.

    Article  CAS  PubMed  Google Scholar 

  78. Laine JE, Auriola S, Pasanen M, Juvonen RO. Acetaminophen bioactivation by human cytochrome p450 enzymes and animal microsomes. Xenobiotica. 2009;39(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  79. Mazaleuskaya L, Sangkuhl K, Thorn CF, Fitzgerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2016;25(8):416–26.

    Article  Google Scholar 

  80. McGill MR, Lebofsky M, Norris HK, Slawson MH, Bajt ML, Zie Y, Williams CD, Wilkins DG, Rollins DE, Jaeschke H. Plasma and liver Acetaminophen-protein adduct levels in mice after Acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicol Appl Pharmacol. 2013;269(3):240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gorski JC, Vannaprsaht S, Hamman MA, Ambrosius WT, Bruce MA, Haehner-Daniels B, Hall SD. The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome p450 3A activity. Clin Pharm Ther. 2003;74:275–87.

    Article  CAS  Google Scholar 

  82. Kapetas AJ, Sorich MJ, Rodrigues AD, Rowland A. Guidance for Rifampin and Midazolam dosing protocols to study intestinal and hepatic Cytochrome P450 (CYP) 3A4 induction and de-induction. Am Assoc Pharm Sci. 2019;21(78):1–11.

    Google Scholar 

  83. Haslam IS, Jones K, Coleman T, Simmons NL. Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br J Pharmacol. 2008;154:246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim J, Nam WS, Kim SJ, Kwon OK, Seung EJ, Jo JJ, Shresha R, Lee TH, Jeon TW, Ki SH, Lee HS, Lee S. Mechanism investigation of Rifampicin-induced liver injury using comparative toxicoproteomics in mice. Int J Mol Sci. 2017:18(1417):1–13.

    Google Scholar 

  85. Akiyoshi T, Ito M, Murase S, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H. Mechanism-based inhibition profiles of Erythromycin and Clarithromycin with Cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet. 2013;28(5):411–5.

    Article  CAS  PubMed  Google Scholar 

  86. Boetsch C, Parrott N, Fowler S, Poirier A, Hainzl D, Banken L, Martin-Facklam M, Hofmann C. Effects of Cytochrome P450 3A4 inhibitors–Ketoconazole and Erythromycin–on bitopertin pharmacokinetics and comparison with physiologically based modelling predictions. Clin Pharmacokinet. 2016;55:237–47.

    Article  CAS  PubMed  Google Scholar 

  87. Tonyushkina K, Nichols JH. Glucose meters: a review of technical challenges to obtaining accurate results. J Diabetes Sci Technol. 2009;3(4):971–80. Published 2009 Jul 1. https://doi.org/10.1177/193229680900300446.

    Article  Google Scholar 

  88. Haliassos A, Drakopoulos I, Katritsis D, Chiotinis N, Korovesis S, Makris K. Measurement of glycated hemoglobin (HbA1c) with an automated POCT instrument in comparison with HPLC and automated immunochemistry method: evaluation of the influence of hemoglobin variants. Clin Chem Lab Med. 2006;44(2):223–7. https://doi.org/10.1515/CCLM.2006.041.

    Article  CAS  PubMed  Google Scholar 

  89. Little RR, Roberts WL. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J Diabetes Sci Technol. 2009;3(3):446–51. https://doi.org/10.1177/193229680900300307. PMID: 20144281; PMCID: PMC2769887

    Article  Google Scholar 

  90. Davidson M, Ballinger K, Khetani S. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes. Sci Rep. 2016;6:28178. https://doi.org/10.1038/srep28178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28(4):1023–39. https://doi.org/10.1681/ASN.2016060666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Núñez M. Hepatotoxicity of antiretrovirals: incidence, mechanisms and management. J Hepatol. 2006;44(1 Suppl):S132–9. https://doi.org/10.1016/j.jhep.2005.11.027. Epub 2005 Nov 28

    Article  CAS  PubMed  Google Scholar 

  93. Hughes A, Barber T, Nelson M. New treatment options for HIV salvage patients: an overview of second generation PIs, NNRTIs, integrase inhibitors and CCR5 antagonists. J Infect. 2008;57(1):1–10. https://doi.org/10.1016/j.jinf.2008.05.006. Epub 2008 Jun 16

    Article  PubMed  Google Scholar 

  94. Pau AK, Penzak SR, Boyd SD, McLaughlin M, Morse CG. Impaired maraviroc and raltegravir clearance in a human immunodeficiency virus-infected patient with end-stage liver disease and renal impairment: a management dilemma. Pharmacotherapy. 2012;32(1):e1–6. https://doi.org/10.1002/PHAR.1003. PMID: 22392831; PMCID: PMC4518450

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zheng Y, Lui G, Boujaafar S, Aboura R, Bouazza N, Foissac F, Treluyer JM, Benaboud S, Hirt D, Gana I. Development of a simple and rapid method to determine the unbound fraction of dolutegravir, raltegravir and darunavir in human plasma using ultrafiltration and LC-MS/MS. J Pharm Biomed Anal. 2021;196:113923. https://doi.org/10.1016/j.jpba.2021.113923. Epub 2021 Jan 25

    Article  CAS  PubMed  Google Scholar 

  96. Sulkowski MS. Drug-induced liver injury associated with antiretroviral therapy that includes HIV-1 protease inhibitors. Clin Infect Dis. 2004;38(Suppl 2):S90–7. https://doi.org/10.1086/381444.

    Article  CAS  PubMed  Google Scholar 

  97. Parant F, Miailhes P, Brunel F, Gagnieu MC. Dolutegravir-related neurological adverse events: a case report of successful management with therapeutic drug monitoring. Curr Drug Saf. 2018;13(1):69–71. https://doi.org/10.2174/1574886313666180116124046.

    Article  PubMed  Google Scholar 

  98. Nakaharai K, Miyajima M, Kobayashi H, Shimizu A, Hosaka Y, Horino T, Hori S. Severe thrombocytopenia during Dolutegravir-containing antiretroviral therapy. Intern Med. 2017;56(16):2229–32. https://doi.org/10.2169/internalmedicine.8377-16. Epub 2017 Aug 1. PMID: 28781310; PMCID: PMC5596289

    Article  Google Scholar 

  99. Schalkwijk S, Greupink R, Colbers AP, Wouterse AC, Verweij VG, van Drongelen J, Teulen M, van den Oetelaar D, Burger DM, Russel FG. Placental transfer of the HIV integrase inhibitor dolutegravir in an ex vivo human cotyledon perfusion model. J Antimicrob Chemother. 2016;71(2):480–3. https://doi.org/10.1093/jac/dkv358. Epub 2015 Nov 3

    Article  CAS  PubMed  Google Scholar 

  100. Mohan H, Lenis MG, Laurette EY, Tejada O, Sanghvi T, Leung KY, Cahill LS, Sled JG, Delgado-Olguín P, Greene NDE, Copp AJ, Serghides L. Dolutegravir in pregnant mice is associated with increased rates of fetal defects at therapeutic but not at supratherapeutic levels. EBio Med. 2021;63:103167. https://doi.org/10.1016/j.ebiom.2020.103167. Epub 2020 Dec 18. PMID: 33341441; PMCID: PMC7753150

    CAS  Google Scholar 

  101. Tsuchiya K, Ohuchi M, Yamane N, Aikawa H, Gatanaga H, Oka S, Hamada A. High-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of raltegravir, dolutegravir and elvitegravir concentrations in human plasma and cerebrospinal fluid samples. Biomed Chromatogr. 2018;32(2) https://doi.org/10.1002/bmc.4058. Epub 2017 Aug 21

  102. Duthaler U, Berger B, Erb S, Battegay M, Letang E, Gaugler S, Natamatungiro A, Mnzava D, Donzelli M, Krähenbühl S, Haschke M. Using dried blood spots to facilitate therapeutic drug monitoring of antiretroviral drugs in resource-poor regions. J Antimicrob Chemother. 2018;73(10):2729–37. https://doi.org/10.1093/jac/dky254.

    Article  CAS  PubMed  Google Scholar 

  103. Wecker L, Taylor DA, Theobald RJ. Chapter 66: Antiretroviral drugs for HIV. In: Brody's human pharmacology: mechanism-based therapeutics. Essay Mosby/Elsevier; 2019. p. 570–1.

    Google Scholar 

  104. Sax PE. Patient monitoring during HIV antiretroviral therapy. UpToDate. 2020, June 15. Retrieved from https://www.uptodate.com/contents/patient-monitoring-during-hiv-antiretroviral-therapy#H4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Fishberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fishberger, G. et al. (2022). Plasma Therapeutic Drug Monitoring and Clinical Toxicology. In: Amponsah, S.K., Pathak, Y.V. (eds) Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-12398-6_3

Download citation

Publish with us

Policies and ethics