Skip to main content

Detection of Anthropogenic and Environmental Degradation in Mongolia Using Multi-Sources Remotely Sensed Time Series Data and Machine Learning Techniques

  • Chapter
  • First Online:
Book cover Environmental Degradation in Asia

Abstract

The main objective of this study is to investigate land degradation and environmental change in Mongolia using time series of multi-sources remotely sensed data and advanced approaches. As the data analysis techniques, the Random Forest (RF) classifier, Ordinary Least Square (OLS), and Partial Least Square (PLS) regressions, Break for Additive Season and Trend (BFAST) algorithm, Sen’s slope and Restrend method were applied. For detecting land degradation and environmental change, we have investigated several factor impacts: (1) climate factor impact on land degradation and environmental change, (2) impact of land cover change on land degradation and environmental change, (3) impact of vegetation index on land degradation and environmental change, (4) impact of drought on land degradation and environmental change. The meteorological time series analysis showed that between 1990 and 2019, air temperature over Mongolian has increased by 1.8 °C, while annual total precipitation over Mongolia had decreased from 714 to 640 mm. The land cover analysis indicated that between 1990 and 2019, forest, steppe, dry steppe, and cropland were decreased. In contrast, the meadow steppe, wetland, sand land, broken area, urban land, and water were increased. The trend analysis result indicated that positive trends were observed in Mongolia's central, northern, and northeastern parts. In contrast, the negative trends were detected in all areas of the west, southern region, forested areas in the north and east, around the Ulaanbaatar city, and in the grassland area of eastern Mongolia. The drought detection analysis showed that the years 1993, 1994, 1997, 2000–2002, 2004–2007, 2009, and 2017 could very well detect the droughts during the growing season for the period 1990–2019. The trend analysis result showed that negative and positive trends of time series NDVI were strongly related to land cover change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations Conventions on Combat Desertification [UNCCD] secretariat (2013) Mid-term evaluation of the 10-year strategic plan and framework to enhance the implementation of the Convention (2008–2018), Report by the inter sessional working group, conference of the parties, eleventh session, Windhoek, Namibia

    Google Scholar 

  2. United Nations Environmental Program [UNEP] (1992) The status of desertification and implementation of the United Nations plan of action to combat desertification, Nairobi

    Google Scholar 

  3. United Nations Conference on Environment and Development [UNCED] (1992) Managing fragile ecosystems, combating desertification and drought, chapter 12 of agenda, 21. Rio de Janerio, Brazil

    Google Scholar 

  4. Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview, responses to land degradation. In: Bridges EM, Hannam ID, Oldeman LR, Pening de Vries FWT, Scherr SJ, Sompatpanit S (eds) Proceeding 2nd the international conference on land degradation and desertification, Khon Kaen, Thailand. Oxford Press, New Delhi, India

    Google Scholar 

  5. Middleton N, Thomas D (1997) World atlas of desertification, edn 2. Arnold, Hodder Headline, PLC

    Google Scholar 

  6. Lal R, Stewart BA (1994) Research priorities for soil processes and water quality in 21st century. In: Lal R, Stewart BA (eds) Soil processes and water quality

    Google Scholar 

  7. Oldeman LR (1992) Global extent of soil degradation. In Bi-Annual Report 1991–1992/ISRIC 19 p

    Google Scholar 

  8. Dregne HE (1992) Degradation and restoration of arid lands

    Google Scholar 

  9. McMahon M (2020) Accessed on 10 Oct 2020. Available online: https://www.wisegeek.com/what-is-environmental-degradation.htm

  10. Mahendra Kumar T (2015) Morphological characterization, quality, yield and DNA fingerprinting of bio-field energy treated alphonso mango (Mangifera indica L.). J Food Nutr Sci 3(6):245. https://doi.org/10.11648/j.jfns.20150306.18

  11. Johnson DL, Ambrose SH, Bassett TJ, Bowen ML, Crummey DE, Isaacson JS, Johnson DN, Lamb P, Saul M, Winter‐Nelson AE (1997) Meanings of environmental terms. J Environ Qual 26:581. https://doi.org/10.2134/jeq1997.00472425002600030002x

  12. International Strategy for Disaster Reduction [ISDR] (2010) Disaster risk reduction: an instrument for achieving the millennium development goals: Advocacy kit for parliamentarians

    Google Scholar 

  13. United Nations Conventions on Combat Desertification [UNCCD] (2004) In final report on the workshop on forest and forest ecosystems: promoting synergy in the three Rio conventions, 5 p

    Google Scholar 

  14. Millennium Ecosystem Assessment [MEA] (2005) Ecosystems and human well‐being: synthesis. Island Press, Washington, DC, USA. http://www.bioquest.org/wp-content/blogs.dir/files/2009/06/ecosystems-and-health.pdf

  15. United Nations Environmental Program [UNEP]-Fi M, Asset Management Working Group (2007) Demystifying responsible investment performance. A review of key academic and border research on ESG factors

    Google Scholar 

  16. Zorn M, Komac B (2013) Land degradation. Encyclopedia of natural hazards. In: Bobrowsky PT (ed) Encyclopedia of earth sciences series. Springer, Dordrecht

    Google Scholar 

  17. United Nations Convention to Combat Desertification [UNCCD] (2015) Impulse report-climate change and desertification: anticipating, assessing and adapting to future change in drylands. United Nations Convention to Combat Desertification, Rome, Italy

    Google Scholar 

  18. Stocking M, Murnaghan N (2001) Handbook for the field assessment of land degradation. Earthscan

    Google Scholar 

  19. Metternicht G, Zinck JA, Blanco PD, Del Valle HF (2010) Remote sensing of land degradation: experiences from Latin America and the Caribbean. J Environ Qual 39(1):42. https://doi.org/10.2134/jeq2009.0127

    Article  CAS  Google Scholar 

  20. Liniger H, Schwilch G, Mekdaschi R, Providoli I, Bunning S, Biancalani R, Van Lynden G (2013) Tools for better SLM knowledge management and informed decision-making in addressing land degradation at different scales: the WOCAT–LADA–DESIRE methodology

    Google Scholar 

  21. Koohafkan P, Lantieri D, Nachtergaele F (2003) Land Degradation Assessment in Drylands (LADA): guidelines for a methodological approach. Land and water development division, FAO, Rome

    Google Scholar 

  22. Burrell AL, Evans JP, Liu Y (2018) The impact of dataset selection on land degradation assessment. ISPRS J Photogrammetry Remote Sens 146:22. https://doi.org/10.1016/j.isprsjprs.2018.08.017

  23. Higginbottom TP, Symeonaki E (2014) Assessing land degradation and desertification using vegetation index data: current frameworks and future directions. Remote Sens 6(10):9552. https://doi.org/10.3390/rs6109552

    Article  Google Scholar 

  24. Healy MA, Forrest K, Bastin G (2016) The role of a knowledge broker in improving knowledge and understanding of climate change in the Australian rangelands. Rangeland J 37(6):541. https://www.publish.csiro.au/RJ/RJ15060

  25. Ludwig JA, Tongway DJ, Bastin GN, James CD (2004) Monitoring ecological indicators of rangeland functional integrity and their relation to biodiversity at local to regional scales. Austral Ecol 29(1):108. https://doi.org/10.1111/j.1442-9993.2004.01349.x

    Article  Google Scholar 

  26. Otgonbayar M, Atzberger C, Mattiuzzi M, Erdenedalai A (2019) Estimation of climatologies of average monthly air temperature over Mongolia using MODIS land surface temperature (LST) time series and machine learning techniques. Remote Sens 11(21):2588. https://doi.org/10.3390/rs11212588

    Article  Google Scholar 

  27. Rishmawi K, Prince SD (2016) Environmental and anthropogenic degradation of vegetation in the Sahel from 1982 to 2006. Remote Sens 8(11):948. https://doi.org/10.3390/rs8110948

    Article  Google Scholar 

  28. Atkinson PM, Jeganathan C, Dash J, Atzberger C (2012) Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens Environ 123:400. https://doi.org/10.1016/j.rse.2012.04.001

  29. Atzberger C (2014) Special issue on geodata processing at the institute of surveying, remote sensing and land information at BOKU in Vienna. PFG Photogrammetry, Fernerkundung, Geoinformation, 309 p. https://doi.org/10.1127/1432-8364/2014/0225

  30. Eerens H, Haesen D, Rembold F, Urbano F, Tote C, Bydekerke L (2014) Image time series processing for agriculture monitoring. Environ Model Softw 53:154. https://doi.org/10.1016/j.envsoft.2013.10.021

  31. Atzberger C, Eilers PH (2011) A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. Int J Digital Earth 4(5):365. https://doi.org/10.1080/17538947.2010.505664

    Article  Google Scholar 

  32. Yengoh GT, Dent D, Olsson L, Tengberg AE, Tucker CJ (2015) Use of the Normalized Difference Vegetation Index (NDVI) to assess land degradation at multiple scales: current status, future trends, and practical considerations

    Google Scholar 

  33. Jonsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40(8):1824. https://doi.org/10.1109/TGRS.2002.802519

    Article  Google Scholar 

  34. McKellip RD, Ross KW, Spruce JP, Smoot JC, Ryan RE, Gasser GE, Vaughan RD (2010) Phenological parameters estimation tool

    Google Scholar 

  35. Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114(1):106. https://doi.org/10.1016/j.rse.2009.08.014

    Article  Google Scholar 

  36. Brown ME, De Beurs K, Vrieling A (2010) The response of African land surface phenology to large scale climate oscillations. Remote Sens Environ 114(10):2286. https://doi.org/10.1016/j.rse.2010.05.005

    Article  Google Scholar 

  37. Udelhoven T (2010) TimeStats: a software tool for the retrieval of temporal patterns from global satellite archives. IEEE J Select Top Appl Earth Obs Remote Sens 4(2):310. https://doi.org/10.1109/JSTARS.2010.2051942, https://ieeexplore.ieee.org/document/5512552

  38. Rodrigues A, Marcal AR, Cunha M (2011) PhenoSat A tool for vegetation temporal analysis from satellite image data. In: 2011 6th international workshop on the analysis of multi-temporal remote sensing images (multi-temp). IEEE, 45 p. https://doi.org/10.1109/Multi-Temp.2011.6005044, https://ieeexplore.ieee.org/abstract/document/6005044

  39. Rembold F, Meroni M, Urbano F, Royer A, Atzberger C, Lemoine G, Haesen D (2015) Remote sensing time series analysis for crop monitoring with the SPIRITS software: new functionalities and use examples. Front Environ Sci 3(46). https://doi.org/10.3389/fenvs.2015.00046

  40. Belda S, Pipia L, Morcillo-Pallarés P, Rivera-Caicedo JP, Amin E, De Grave C, Verrelst J (2020) DATimeS: a machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environ Model Softw 104666 p. https://doi.org/10.1016/j.envsoft.2020.104666

  41. Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24(3):223. https://doi.org/10.1111/j.1475-2743.2008.00169.x

    Article  Google Scholar 

  42. Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57(4):535. https://doi.org/10.1016/S0140-1963(03)00121-6

    Article  Google Scholar 

  43. Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68(2):271. https://doi.org/10.1016/j.jaridenv.2006.05.015

    Article  Google Scholar 

  44. National statistics office of Mongolia [NSOM] (2019) Number of population and livestock, Mongolian statistical information service. Accessed 29 Sept 2020. http://www.1212.mn

  45. Mattiuzzi M, Verbesselt J, Hengel T, Klisch A, Stevens F, Mosher S, Evans B, Lobo A, Hufkens K, Detsch F (2019) MODIS: MODIS acquisition and processing package. R package version 1.1.5. Accessed on 29 Sept 2019. Available online: https://cran.r-project.org/web/packages/MODIS/MODIS.pdf

  46. Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485. https://doi.org/10.1080/01431160500168686

    Article  Google Scholar 

  47. Detsch F (2016) Package ‘GIMMS’. Accessed on 25 Nov 2020, Available online: https://cran.r-project.org/web/packages/gimms/gimms.pdf

  48. Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7(1):1. https://doi.org/10.6084/m9.figshare.11980500

    Article  Google Scholar 

  49. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  50. Eckert S, Hüsler F, Liniger H, Hodel E (2015) Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J Arid Environ 113:16. https://doi.org/10.1016/j.jaridenv.2014.09.001

  51. Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L, Li C (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int J Remote Sens 34(7):2607. https://doi.org/10.1080/01431161.2012.748992

    Article  Google Scholar 

  52. Liu H, Gong P, Wang J, Clinton N, Bai Y, Liang S (2020) Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst Sci Data 12(2):1217. https://doi.org/10.5194/essd-12-1217-2020

    Article  Google Scholar 

  53. Amarsaikhan D (2020) Advanced classification of optical and SAR images for urban land cover mapping. In: Invited paper published in international archives of the photogrammetry, RS and spatial information sciences, XXIV ISPRS congress, Nice, France, 1417 p. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1417-2020

  54. Mas JF, Flores JJ (2008) The application of artificial neural networks to the analysis of remotely sensed data. Int J Remote Sens 29(3):617. https://doi.org/10.1080/01431160701352154

    Article  Google Scholar 

  55. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press

    Google Scholar 

  56. Damdinsuren A, Douglas T (2004) Data fusion and multisource data classification. Int J Remote Sens 17(25):3529. https://doi.org/10.1080/0143116031000115111

    Article  Google Scholar 

  57. Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247. https://doi.org/10.1016/j.isprsjprs.2010.11.001

    Article  Google Scholar 

  58. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123. https://doi.org/10.1007/BF00058655.pdf

  59. Rogan JM, Grayson DJ (2003) Towards a theory of curriculum implementation with particular reference to science education in developing countries. Int J Sci Educ 25(10):1171. https://doi.org/10.1080/09500690210145819

    Article  Google Scholar 

  60. Atzberger C, Klisch A, Mattiuzzi M, Vuolo F (2014) Phenological metrics derived over the European continent from NDVI3g data and MODIS time series. Remote Sens 6(1):257. https://doi.org/10.3390/rs6010257

    Article  Google Scholar 

  61. Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogrammetry Remote Sens 67:93. https://doi.org/10.1016/j.isprsjprs.2011.11.002

  62. Nyamjargal E, Amarsaikhan D, Munkh-Erdene A, Battsengel V, Bolorchuluun C (2020) Object-based classification of mixed forest types in Mongolia. Geocarto Int 35(14):1615. https://doi.org/10.5564/pmas.v60i4.1504

    Article  Google Scholar 

  63. Weatherhead EC, Reinsel GC, Tiao GC, Meng XL, Choi D, Cheang WK, Miller AJ (1998). Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J Geophys Res Atmosp 103(D14):17149–17161. https://doi.org/10.1029/98JD00995

  64. Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81p. https://doi.org/10.2307/2332226

    Article  Google Scholar 

  65. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379

    Article  Google Scholar 

  66. Meng X, Gao X, Li S, Lei J (2020) Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982–2015. Remote Sens 12(4):603. https://doi.org/10.3390/rs12040603

    Article  Google Scholar 

  67. R Core Team: a language and environment for statistical computing. Available online: https://www.r-project.org/. Accessed on 31 Oct 2021

  68. Erian WF (2005) Arab network of the remote sensing centers for desertification monitoring and assessment. Remote sensing and geo-information processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 452–459

    Google Scholar 

  69. Haywood J, Randall J (2008) Trending seasonal data with multiple structural breaks. NZ visitor arrivals and the minimal effects of 9

    Google Scholar 

  70. Xu Z, Shen X, Cao L, Coops NC, Goodbody TR, Zhong T, Wu X (2020) Tree species classification using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests. Int J Appl Earth Obs Geoinform 92:102173. https://doi.org/10.1016/j.jag.2020.102173

  71. Zeileis A (2005) A unified approach to structural change tests based on ML scores, F statistics, and OLS residuals. Economet Rev 24(4):445. https://doi.org/10.1080/07474930500406053

    Article  Google Scholar 

  72. Nanzad L, Zhang J, Tuvdendorj B, Nabil M, Zhang S, Bai Y (2019) NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J Arid Environ 164:69. https://doi.org/10.1016/j.jaridenv.2019.01.019

  73. Klisch A, Atzberger C (2016) Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sens 8(4):267. https://doi.org/10.3390/rs8040267

    Article  Google Scholar 

  74. Palmer WC (1965) Meteorological drought, vol 30. US Department of Commerce, Weather Bureau

    Google Scholar 

  75. McKee TB (1995) Drought monitoring with multiple time scales. In: Proceedings of 9th conference on applied climatology, Boston

    Google Scholar 

  76. McKee TB, Doesken NJ, Kleist (1993) The relationship of drought frequency and duration to time scales. Proc 8th Conf Appl Climatol 17(22):179. https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf

  77. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  78. Enenkel M, Steiner C, Mistelbauer T, Dorigo W, Wagner W, See L, Rogenhofer E (2016) A combined satellite-derived drought indicator to support humanitarian aid organizations. Remote Sens 8(4):340. https://doi.org/10.3390/rs8040340

    Article  Google Scholar 

  79. Hao Z, AghaKouchak A (2013) Multivariate standardized drought index: a parametric multi-index model. Adv Water Resour 57:12. https://doi.org/10.1016/j.advwatres.2013.03.009

  80. Kogan FN (1990) Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int J Remote Sens 11(8):1405. https://doi.org/10.1080/01431169008955102

    Article  Google Scholar 

  81. Liu WT, Kogan FN (1996) Monitoring regional drought using the vegetation condition index. Int J Remote Sens 17(14):2761. https://doi.org/10.1080/01431169608949106

    Article  Google Scholar 

  82. Adede C, Oboko R, Wagacha PW, Atzberger C (2019) Model ensembles of artificial neural networks and support vector regression for improved accuracy in the prediction of vegetation conditions and droughts in four Northern Kenya counties. ISPRS Int J Geo Inf 8(12):562. https://doi.org/10.3390/ijgi8120562

    Article  Google Scholar 

  83. Anyamba A, Tucker CJ (2012) Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sens Drought: Innovative Monit Approaches 23(20). https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1217&context=nasapub

  84. Anyamba A, Tucker CJ, Eastman JR (2001) NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int J Remote Sens 22(10):1847

    Article  Google Scholar 

  85. Ibrahim YZ, Balzter H, Kaduk J, Tucker CJ (2015) Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens 7(5):5471. https://doi.org/10.3390/rs70505471

    Article  Google Scholar 

  86. Wessels KJ, Van Den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10. https://doi.org/10.1016/j.rse.2012.06.022

  87. Huber S, Fensholt R, Rasmussen K (2011) Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob Planet Change 76(3–4):186. https://doi.org/10.1016/j.gloplacha.2011.01.006

    Article  Google Scholar 

  88. Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on inter-annual to inter-decadal time scales. Science 302(5647):1027. https://doi.org/10.1126/science.1089357

  89. Wallace KJ (2007) Classification of ecosystem services: problems and solutions. Biol Cons 139(3–4):235. https://doi.org/10.1016/j.biocon.2007.07.015

    Article  Google Scholar 

  90. Reyers B, O’Farrell PJ, Cowlin RM, Egoh BN, Le Maitre DC, Vlok JH (2009) Ecosystem services, land-cover change, and stakeholders: finding a sustainable foothold for a semiarid biodiversity hotspot. Ecol Soc 14(1). https://www.jstor.org/stable/26268036

  91. Gibbard S, Caldeira K, Bala G, Phillips TJ, Wickett M (2005) Climate effects of global land cover change. Geophys Res Lett 32(23). https://doi.org/10.1029/2005GL024550

  92. DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochem Cycles 13(3):803. https://doi.org/10.1029/1999GB900037

    Article  CAS  Google Scholar 

  93. Wang J, Wei H, Yao J, Shao Y, Liang X, Chonokhuu S, Davaasuren D (2020). Analysis of spatiotemporal patterns and driving forces for land degradation and restoration in Mongolia from 1990 to 2015. In: EGU general assembly conference abstracts, May 2020, 2363 p. https://ui.adsabs.harvard.edu/abs/2020EGUGA..22.2363W/abstract

  94. Lamchin M, Lee JY, Lee WK, Lee EJ, Kim M, Lim CH, Kim SR (2016) Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Adv Space Res 57(1):64. https://doi.org/10.1016/j.asr.2015.10.006

    Article  Google Scholar 

  95. Dugarsuren N, Lin C, Tsogt K (2011) Land cover change detection in Mongolia in last decade using MODIS imagery. In: Proceeding of ACRS2011. Taipei, Taiwan, 688 p. https://d1wqtxts1xzle7.cloudfront.net/

  96. Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217. https://doi.org/10.1080/01431160412331269698

    Article  Google Scholar 

  97. Chao YS, Wu CJ, Wu HC, Chen WC (2018) Trend analysis for national surveys: application to all variables from the Canadian health measures survey cycle 1 to 4. PloS one, 13(8):e0200127. https://doi.org/10.1371/journal.pone.0200127

  98. Ali Z, Hussain I, Faisal M, Nazir HM, Hussain T, Shad MY, Hussain Gani S (2017) Forecasting drought using multilayer perceptron artificial neural network model. Adv Meteorol. https://doi.org/10.1155/2017/5681308

    Article  Google Scholar 

  99. Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol J Roy Meteorol Soc 27(15):2103. https://doi.org/10.1002/joc.1498

    Article  Google Scholar 

  100. United Nations Office for Outer Space Affairs [UNOOSA]. Accessed 29 Sept 2020

    Google Scholar 

  101. Chang S, Wu B, Yan N, Davdai B, Nasanbat E (2017) Suitability assessment of satellite-derived drought indices for Mongolian grassland. Remote Sens 9(7):650. https://doi.org/10.3390/rs9070650

    Article  Google Scholar 

  102. Dorjsuren M, Liou YA, Cheng CH (2016) Time series MODIS and in situ data analysis for Mongolia drought. Remote Sens 8(6):509. https://doi.org/10.3390/rs8060509

    Article  Google Scholar 

  103. Erdenetuya M, Bulgan D, Erdenetsetseg B (2011) Drought monitoring and assessment using multi-satellite data in Mongolia. In: Processing 32nd asian conference remote sensing. http://toc.proceedings.com/14023webtoc.pdf

  104. Bayarjargal Y, Karnieli A, Bayasgalan M, Khudulmur S, Gandush C, Tucker CJ (2006) A comparative study of NOAA-AVHRR derived drought indices using change vector analysis. Remote Sens Environ 105(1):9. https://doi.org/10.1016/j.rse.2006.06.003

    Article  Google Scholar 

  105. Wang XM, Zhang CX, Hasi E, Dong ZB (2010) Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J Arid Environ 74(1):13. https://doi.org/10.1016/j.jaridenv.2009.08.001

    Article  Google Scholar 

  106. Huang S, Kong J (2016) Assessing land degradation dynamics and distinguishing human-induced changes from climate factors in the Three-North Shelter forest region of China. ISPRS Int J Geo Inf 5(9):158. https://doi.org/10.3390/ijgi5090158

    Article  Google Scholar 

  107. Otgonbayar M, Atzberger C, Chambers J, Damdinsuren A (2019) Mapping pasture biomass in Mongolia using partial least squares, random forest regression and Landsat 8 imagery. Int J Remote Sens 40(8):3204. https://doi.org/10.1080/01431161.2018.1541110

    Article  Google Scholar 

  108. Rosenzweig ML (1968) Net primary productivity of terrestrial communities: prediction from climatological data. Am Nat 102(923):67. https://doi.org/10.1086/282523

  109. Lehouérou HN, Bingham RL, Skerbek W (1988) Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J Arid Environ 15(1):1. https://doi.org/10.1016/S0140-1963(18)31001-2

    Article  Google Scholar 

  110. Nyamtseren M (2014) The land degradation and desertification process in Mongolia. Mongolia second assessment report on climate change, Chapter: Climate change impact, Publisher: The Ministry of Environment and Green Development, 1

    Google Scholar 

  111. Hilker T, Natsagdorj E, Waring RH, Lyapustin A, Wang Y (2014) Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob Change Biol 20(2):418–428. https://doi.org/10.1111/gcb.12365

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank many organizations that provided data for this study especially, Institute of Geography and Geoecology, Mongolian Academy of Sciences (IGG MAS), National University of Mongolia (NUM), and the Information and Research Institute of Meteorology, Hydrology, and Environment (IRIMHE). The authors also appreciate the provider’s time series of satellite and meteorological data to allow us to download and use these datasets. We thank the editors for their valuable comments and suggestions on the chapter who is Dr. Ayad M. Fadhil Al-Quraishi, Dr. Abdelazim M Negm and Dr. Yaseen T. Mustafa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otgonbayar Munkhdulam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munkhdulam, O., Clement, A., Amarsaikhan, D., Yokoyama, S., Erdenesukh, S., Sainbayar, D. (2022). Detection of Anthropogenic and Environmental Degradation in Mongolia Using Multi-Sources Remotely Sensed Time Series Data and Machine Learning Techniques. In: Al-Quraishi, A.M.F., Mustafa, Y.T., Negm, A.M. (eds) Environmental Degradation in Asia. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-12112-8_2

Download citation

Publish with us

Policies and ethics