Skip to main content

Estimation of Time-Dependent Parameters in a Simple Compartment Model Using Covid-19 Data

  • Conference paper
  • First Online:
  • 496 Accesses

Part of the book series: Mathematics in Industry ((TECMI,volume 39))

Abstract

Owing to the ongoing pandemic of COVID-19 an increased interest in epidemiological mathematical modelling arised. Several specific extensions of the classical susceptible-infected-recovered (SIR) modeling approach for the COVID-19 pandemic were developed to make forecasts. However, in all models, parameters have to be fitted on historical data. In this work we restrict ourselves to a simple model assuming however time dependent parameters. This makes sense as the parameters represent contact rate as well as recovery and death rate which are parameters that change with mutation of the virus and change in behaviour of the population. We estimate them using a Markov Chain Monte Carlo method. On the example of gender we split the model in society subgroups and estimate group specific parameters as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bacaër, N., In: A Short History of Mathematical Population Dynamics (ed. Nicolas, B.) 89–96 (Springer, London, 2011).

    Google Scholar 

  2. Britton, T., Stochastic epidemic models: A survey. Math. Biosci. 225, 24–35 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  3. Chou, C.-S., and A. Friedman. Introduction to Mathematical Biology. Modeling, Analysis, and Simulations. Springer, 2016.

    Google Scholar 

  4. Elmousalami, H. H., and Hassanien, A. E., Day level forecasting for coronavirus disease (COVID-19) spread: Analysis, modeling and recommendations. arXiv preprint arXiv:2003.07778 (2020).

    Google Scholar 

  5. Ferguson, N. et al., Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. Imperial Coll. Lond.

    Google Scholar 

  6. Friedman, A., Mathematical Biology. Modeling and Analysis. CBMS Regional Conference Series in Mathematics, Vol. 127, Washington, DC, Providence, RI: American Mathematical Society, 2018.

    Google Scholar 

  7. Hethcote, H. W., The Mathematics of Infectious Diseases. SIAM Review 42(4) (2000), 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, Z., Ge, Q., Jin, L., and Xiong, M. Artificial intelligence forecasting of COVID-19 in China. arXiv preprint arXiv:2002.07112 (2020).

    Google Scholar 

  9. Kermack W.O., McKendrick A.G., A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London Ser. A Vol. 115 (1927), 700–721.

    MATH  Google Scholar 

  10. Kim, Y., Ryu, H., and Lee, S., Agent-based modeling for super-spreading events: A case study of MERS-CoV transmission dynamics in the Republic of Korea. Int. J. Environ. Res. Public Health 15, 2369 (2018).

    Article  Google Scholar 

  11. Liu, Y., Gayle, A. A., Wilder-Smith, A., and Rocklöv, J., The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 27, 1–4.

    Google Scholar 

  12. Chib, S., and E. Greenberg. Understanding the Metropolis-Hastings algorithm. The American Statistician 49.4 (1995): 327–335.

    Google Scholar 

  13. Murray, J.D., Mathematical Biology. I. An Introduction, Interdisciplinary Applied Mathematics, vol 17, 3rd ed. New York: Springer-Verlag, 2002.

    Google Scholar 

  14. Rabajante, J. F. Insights from early mathematical models of 2019-nCoV acute respiratory disease (COVID-19) dynamics. arXiv preprint arXiv:2002.05296 (2020).

    Google Scholar 

  15. https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74.

  16. Satsuma, J., Willox, R., Ramani, A., Grammaticos, B., and Carstea, A., Extending the SIR epidemic model. Phys. A 336, 369–375 (2004).

    Article  Google Scholar 

  17. Weiss, H., A Mathematical Introduction to Population Dynamics. Rio de Janeiro: Instituto Nacional de Matemática Pura e Aplicada (IMPA), 2009.

    Google Scholar 

  18. Yuan, J., Li, M., Lv, G., and Lu, Z. K. Monitoring transmissibility and mortality of COVID-19 in Europe. Int. J. Infect. Dis. 95 (2020), 311–315.

    Article  Google Scholar 

  19. Zhou, Y., Ma, Z., and Brauer, F. A discrete epidemic model for SARS transmission and control in China. Math. Comput. Model. 40 (2004), 1491–1506.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Grundel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahmoudi, M.H., Grundel, S. (2022). Estimation of Time-Dependent Parameters in a Simple Compartment Model Using Covid-19 Data. In: Ehrhardt, M., Günther, M. (eds) Progress in Industrial Mathematics at ECMI 2021. ECMI 2021. Mathematics in Industry(), vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-11818-0_31

Download citation

Publish with us

Policies and ethics