Skip to main content

Impact of Chronic Lung Disease Using Deep Learning: A Survey

  • Conference paper
  • First Online:
Computer, Communication, and Signal Processing (ICCCSP 2022)

Abstract

Artificial intelligence has developed in recent years. It is mostly enviable to discover the facility of contemporaneous state-of-the-art techniques and to examine lung nodule features in terms of a large population. Now a days lung plays a major role all over the world in early prevention in disease identification. The latest progress of deep learning sustains the recognition and categorization of medical images of respiratory problems. There are varieties of lung diseases to be analyzed to select the high mortality rate among them. In this paper, we have provided a comprehensive study of several lung ailments, in particular lung cancer, pneumonia, and COVID-19/SARS, Chronic Obstructive Pulmonary Disease. Existing deep learning methodology used to diagnose lung diseases are clearly explained and it will be helpful for the lung disease identify the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Human Organs and Organ Systems Homepage. https://bio.libretexts.org/Bookshelves/Human_Biology/Book%3A_Human_Biology_(Wakim_and_Grewal)/10%3A_Introduction_to_the_Human_Body/10.4%3A_Human_Organs_and_Organ_Systems

  2. Çetin, G., Akkulak, G., Özdemir, S.: Locate the Internal organs in the human body: a survey in Turkey. Procedia Soc. Behav. Sci. 116, 2819–2824 (2014). https://doi.org/10.1016/j.sbspro.2014.01.663

    Article  Google Scholar 

  3. Meng, Y.: A machine learning approach to classifying self-reported health status in a cohort of patients with heart disease using activity tracker data. IEEE J. Biomed. Heal. Inf. 24(3), 878–884 (2020). https://doi.org/10.1109/JBHI.2019.2922178

  4. Hussain, M.A., Hamarneh, G., Garbi, R.: Cascaded regression neural nets for kidney localization and segmentation-free volume estimation. IEEE Trans. Med. Imaging 40(6), 1555–1567 (2021). https://doi.org/10.1109/TMI.2021.3060465

    Article  Google Scholar 

  5. Ibragimov, B., Toesca, D.A.S., Yuan, Y., Koong, A.C., Chang, D.T., Xing, L.: Neural networks for deep radiotherapy dose analysis and prediction of liver SBRT outcomes. IEEE J. Biomed. Health Inf. 23(5), 1821–1833 (2019). https://doi.org/10.1109/JBHI.2019.2904078

    Article  Google Scholar 

  6. Alves, S.S.A., de Souza, E., Reboucas, S.A., de Oliveira, F., Braga, A.M., Filho, P.P.R.: Lung diseases classification by analysis of lung tissue densities. IEEE Latin America Trans. 18(09), 1329–1336 (2020). https://doi.org/10.1109/TLA.2020.9381790

    Article  Google Scholar 

  7. Ibrahim, D.M., Elshennawy, N.M., Sarhan, A.M.: Deep-chest: multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput. Biol. Med. 132, 104348 (2021). https://doi.org/10.1016/j.compbiomed.2021.104348

    Article  Google Scholar 

  8. WHO Coronavirus (COVID-19) Dashboard Homepage. https://covid19.who.int/. Accessed 27 Dec 2021

  9. How Lungs Work | American Lung Association Homepage. https://www.lung.org/lung-health-diseases/how-lungs-work. Accessed 27 Dec 2021

  10. Lung Anatomy, Function, and Homepage. https://www.healthline.com/human-body-maps/lung. Accessed 10 Dec 2021

  11. Dobric, A., et al.: Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. Pharmacol. Ther. A., 108017 (2021). https://doi.org/10.1016/J.PHARMTHERA.2021.108017

  12. Tomita, K., et al.: Deep learning facilitates the diagnosis of adult asthma. Allergol. Int. 68(4), 456–461 (2019). https://doi.org/10.1016/J.ALIT.2019.04.010

    Article  Google Scholar 

  13. Yu, G., et al.: Identification of pediatric respiratory diseases using a fine-grained diagnosis system. J. Biomed. Inform. 117, 103754 (2021). https://doi.org/10.1016/J.JBI.2021.103754

    Article  Google Scholar 

  14. Jefferson, N., Fitzgerald, K.: Antibiotic stewardship for treatment of acute bronchitis in retail health. J. Nurse Practit. 16(8), 608–611 (2020). https://doi.org/10.1016/j.nurpra.2020.05.005

    Article  Google Scholar 

  15. Stokes, K., et al.: A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings. Biocybern. Biomed. Eng. 41(4), 1288–1302 (2021). https://doi.org/10.1016/J.BBE.2021.09.002

    Article  Google Scholar 

  16. Manickam, A., JJiang, Y., Zhou, A., Soundrapandiyan, R., Samuel, D.: Automated pneumonia detection on chest X-ray images: a deep learning approach with different optimizers and transfer learning architectures. Measurement 184, 109953 (2021). https://doi.org/10.1016/j.measurement.2021.109953

    Article  Google Scholar 

  17. Kim, G.H.J., Shi, Y., Yu, W., Wong, W.K.: A study design for statistical learning technique to predict radiological progression with an application of idiopathic pulmonary fibrosis using chest CT images. Contemp. Clin. Trials 104, 106333 (2021). https://doi.org/10.1016/J.CCT.2021.106333

  18. Togo, R., et al.: Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps. Comput. Biol. Med. 104, 81–86 (2019). https://doi.org/10.1016/J.COMPBIOMED.2018.11.008

    Article  Google Scholar 

  19. Tsai, C.H., et al.: Automatic deep learning-based pleural effusion classification in lung ultrasound images for respiratory pathology diagnosis. Phys. Medica 83, 38–45 (2021). https://doi.org/10.1016/J.EJMP.2021.02.023

    Article  Google Scholar 

  20. Piper, A.J.: Obesity Hypoventilation Syndrome. In: Modulation of Sleep by Obesity, Diabetes, Age, and Diet, pp. 91–100. Elsevier (2015). https://doi.org/10.1016/B978-0-12-420168-2.00011-9

    Chapter  Google Scholar 

  21. Schmuelling, L.: Deep learning-based automated detection of pulmonary embolism on CT pulmonary angiograms: no significant effects on report communication times and patient turnaround in the emergency department nine months after technical implementation. Eur. J. Radiol. 141, 109816 (2021). https://doi.org/10.1016/j.ejrad.2021.109816

    Article  Google Scholar 

  22. JWu, J.: Refining diagnostic criteria for paediatric bronchiectasis using low-dose CT scan. Respir. Med. 187, 106547 (2021). https://doi.org/10.1016/j.rmed.2021.106547

    Article  Google Scholar 

  23. Crivelli, P.: Role of thoracic imaging in the management of lymphangioleiomyomatosis. Respir. Med. 157, 14–20 (2019). https://doi.org/10.1016/j.rmed.2019.08.013

    Article  Google Scholar 

  24. Zucker, E.J.: Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J. Cystic Fibrosis 19(1), 131–138 (2020). https://doi.org/10.1016/j.jcf.2019.04.016

    Article  Google Scholar 

  25. Agarwala, S.: Deep learning for screening of interstitial lung disease patterns in high-resolution CT images. Clin. Radiol. 75(6), 481.e1-481.e8 (2020). https://doi.org/10.1016/j.crad.2020.01.010

    Article  Google Scholar 

  26. Doppalapudi, S., Qiu, R.G., Badr, Y.: Lung cancer survival period prediction and understanding: deep learning approaches. Int. J. Med. Inf. 148, 104371 (2021). https://doi.org/10.1016/j.ijmedinf.2020.104371

    Article  Google Scholar 

  27. Sathitratanacheewin, S., Sunanta, P., Pongpirul, K.: Deep learning for automated classification of tuberculosis-related chest X-Ray: dataset distribution shift limits diagnostic performance generalizability. Heliyon 6(8), e04614 (2020). https://doi.org/10.1016/j.heliyon.2020.e04614

    Article  Google Scholar 

  28. Reamaroon, N., Sjoding, M.W., Gryak, J., Athey, B.D., Najarian, K., Derksen, H.: Automated detection of acute respiratory distress syndrome from chest X-Rays using Directionality Measure and deep learning features. Comput. Biol. Med. 134, 104463 (2021). https://doi.org/10.1016/j.compbiomed.2021.104463

    Article  Google Scholar 

  29. Ott, J.: Detecting pulmonary Coccidioidomycosis with deep convolutional neural networks. Mach Learn Appl 5, 100040 (2021). https://doi.org/10.1016/j.mlwa.2021.100040

    Article  Google Scholar 

  30. Miller, J.: A structured program maximizes benefit of lung cancer screening in an area of endemic histoplasmosis. Ann. Thoracic Surg. 114(1), 241–247 (2022). https://doi.org/10.1016/j.athoracsur.2021.06.070

    Article  Google Scholar 

  31. Aliboni, L.: Quantitative CT analysis in chronic hypersensitivity pneumonitis: a convolutional neural network approach. Acad. Radiol. 29, S31–S40 (2022). https://doi.org/10.1016/j.acra.2020.10.009

    Article  Google Scholar 

  32. Zan, A., et al.: DeepFlu: a deep learning approach for forecasting symptomatic influenza a infection based on pre-exposure gene expression. Comput. Methods Programs Biomed. 213, 106495 (2022). https://doi.org/10.1016/J.CMPB.2021.106495

    Article  Google Scholar 

  33. Galateau Salle, F., et al.: Comprehensive molecular and pathologic evaluation of transitional mesothelioma assisted by deep learning approach: a multi-institutional study of the international mesothelioma panel from the MESOPATH reference center. J. Thorac. Oncol. 15(6), 1037–1053 (2020). https://doi.org/10.1016/J.JTHO.2020.01.025

  34. Sharan, R.V., Berkovsky, S., Navarro, D.F., Xiong, H., Jaffe, A.: Detecting pertussis in the pediatric population using respiratory sound events and CNN. Biomed Sig Process Control 68, 102722 (2021). https://doi.org/10.1016/j.bspc.2021.102722

    Article  Google Scholar 

  35. Jimenez-del-Toro, O.: A lung graph model for the radiological assessment of chronic thromboembolic pulmonary hypertension in CT. Comput. Biol. Med. 125, 103962 (2020). https://doi.org/10.1016/j.compbiomed.2020.103962

    Article  Google Scholar 

  36. Long, K.: Probability-based Mask R-CNN for pulmonary embolism detection. Neurocomputing 422, 345–353 (2021). https://doi.org/10.1016/J.NEUCOM.2020.10.022

  37. Sharma, A., Tiwari, S., Deb, M.K., Marty, J.L.: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Agents 56(2), 106054 (2020). https://doi.org/10.1016/j.ijantimicag.2020.106054

    Article  Google Scholar 

  38. Li, X.: Deep learning-enabled system for rapid pneumothorax screening on chest CT. Eur. J. Radiol. 120, 108692 (2019). https://doi.org/10.1016/j.ejrad.2019.108692

    Article  Google Scholar 

  39. Jiang, J., et al.: Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. IEEE Trans. Med. Imaging 38(1), 134–144 (2019). https://doi.org/10.1109/TMI.2018.2857800

    Article  Google Scholar 

  40. Surendar, P.: Diagnosis of lung cancer using hybrid deep neural network with adaptive sine cosine crow search algorithm, Elsevier. Accessed Dec 06 2021. https://www.sciencedirect.com/science/article/pii/S1877750321000636

  41. Guo, Y.: Histological subtypes classification of lung cancers on CT images using 3D Deep learning and radiomics. Acad. Radiol. 28(9), e258–e266 (2021) https://doi.org/10.1016/J.ACRA.2020.06.010

  42. Tortora, M.: Deep reinforcement learning for fractionated radiotherapy in non-small cell lung carcinoma. Artif. Intell. Med. 119, p. 102137 (2021). https://doi.org/10.1016/J.ARTMED.2021.102137

  43. Su, Y.: Lung nodule detection based on faster R-CNN framework. Elsevier. Accessed 6 Dec 2021. https://www.sciencedirect.com/science/article/pii/S0169260720316990

  44. Singh, A., Lall, B., Panigrahi, B.: Deep LF-Net: Semantic lung segmentation from Indian chest radiographs including severely unhealthy images. Elsevier. Accessed 6 Dec 2021. https://www.sciencedirect.com/science/article/pii/S1746809421002639

  45. Trajanovski, S.: Towards radiologist-level cancer risk assessment in CT lung screening using deep learning. Elsevier (2019). Accessed 06 Dec 2021. https://www.sciencedirect.com/science/article/pii/S0895611121000318

  46. Xu, X.: A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering 6(10), 1122–1129 (2020). https://doi.org/10.1016/J.ENG.2020.04.010

  47. Jiang, H., Tang, S., Liu, W., Zhang, Y.: Deep learning for COVID-19 chest CT (computed tomography) image analysis: a lesson from lung cancer. Comput. Struct. Biotechnol. J. 19, 1391–1399 (2021). https://doi.org/10.1016/J.CSBJ.2021.02.016

  48. Hassantabar, S., Ahmadi, M., Sharifi, A.: Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches. Chaos, Solitons Fractals 140 (2020). https://doi.org/10.1016/J.CHAOS.2020.110170

  49. Tuncer, S.A., Ayyıldız, H., Kalaycı, M., Tuncer, T.: Scat-NET: COVID-19 diagnosis with a CNN model using scattergram images. Comput. Biol. Med. 135, 104579 (2021). https://doi.org/10.1016/J.COMPBIOMED.2021.104579

  50. Shibly, K.H., Dey, S.K., Islam, M.T.U., Rahman, M.M.: COVID faster R–CNN: a novel framework to Diagnose Novel Coronavirus Disease (COVID-19) in X-Ray images. Inf. Med. Unlocked 20, 100405 (2020). https://doi.org/10.1016/J.IMU.2020.100405

  51. Islam, M.Z., Islam, M.M., Asraf, A.: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Inf. Med. Unlocked 20, 100412 (2020). https://doi.org/10.1016/J.IMU.2020.100412

  52. Manickam, A., Jiang, J., Zhou, Y., Sagar, A., Soundrapandiyan, R., Dinesh Jackson Samuel, R.: Automated pneumonia detection on chest X-ray images: a deep learning approach with different optimizers and transfer learning architectures. Measurement 184, 109953 (2021). https://doi.org/10.1016/J.MEASUREMENT.2021.109953

  53. Liz, H., Sánchez-Montañés, M., Tagarro, A., Domínguez-Rodríguez, S., Dagan, R., Camacho, D.: Ensembles of Convolutional Neural Network models for pediatric pneumonia diagnosis. Futur. Gener. Comput. Syst. 122, 220–233 (2021). https://doi.org/10.1016/J.FUTURE.2021.04.007

  54. Altan, G., Kutlu, Y., Allahverdi, N.: Deep learning on computerized analysis of chronic obstructive pulmonary disease. IEEE J. Biomed. Heal. Inf. 24(5), 1344–1350 (2020). https://doi.org/10.1109/JBHI.2019.2931395

  55. Du, R.: Identification of COPD from multi-view snapshots of 3D Lung Airway Tree via Deep CNN. IEEE Access 8, 38907–38919 (2020). https://doi.org/10.1109/ACCESS.2020.2974617

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vignesh Kumaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumaran, N.V., Preethi, D.M.D. (2022). Impact of Chronic Lung Disease Using Deep Learning: A Survey. In: Neuhold, E.J., Fernando, X., Lu, J., Piramuthu, S., Chandrabose, A. (eds) Computer, Communication, and Signal Processing. ICCCSP 2022. IFIP Advances in Information and Communication Technology, vol 651. Springer, Cham. https://doi.org/10.1007/978-3-031-11633-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11633-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11632-2

  • Online ISBN: 978-3-031-11633-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics