Skip to main content

Nanomedicine: An Alternative Approach Towards Anti-angiogenic Cancer Therapy

  • Chapter
  • First Online:
Nanoparticles in Angiogenesis and Cancer

Abstract

The molecular mediators of angiogenesis consist of different growth factors and cytokines (e.g., VEGF and FGF), matrix metalloproteinases (MMPs), and molecules involved in intracellular signaling pathways (Rho GTPases) (Ucuzian et al in J Burn Care Res 31:158–175, 2010, [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Ucuzian, A.A. Gassman, A.T. East, H.P. Greisler, Molecular mediators of angiogenesis, Journal of Burn Care & Research 31(1) (2010) 158–175.

    Google Scholar 

  2. A. Papa, E. Zaccarelli, D. Caruso, P. Vici, P. Benedetti Panici, F. Tomao, Targeting angiogenesis in endometrial cancer-new agents for tailored treatments, Expert Opinion on Investigational Drugs 25(1) (2016) 31–49.

    Google Scholar 

  3. M. Shibuya, Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies, Genes Cancer 2(12) (2011) 1097–1105.

    Google Scholar 

  4. F.W. Liu, J. Cripe, K.S. Tewari, Anti-angiogenesis therapy in gynecologic malignancies, Oncology 29(5) (2015) 350–350.

    Google Scholar 

  5. S. Kargozar, F. Baino, S. Hamzehlou, M.R. Hamblin, M. Mozafari, Nanotechnology for angiogenesis: opportunities and challenges, Chemical Society Reviews 49(14) (2020) 5008–5057.

    CAS  Google Scholar 

  6. R.N. Gacche, R.J. Meshram, Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1846(1) (2014) 161–179.

    Google Scholar 

  7. R. Ronca, M. Benkheil, S. Mitola, S. Struyf, S. Liekens, Tumor angiogenesis revisited: regulators and clinical implications, Medicinal research reviews 37(6) (2017) 1231–1274.

    Google Scholar 

  8. J. Folkman, Angiogenesis inhibitors: a new class of drugs, Cancer biology & therapy 2(sup1) (2003) 126–132.

    Google Scholar 

  9. S.Y. Yoo, S.M. Kwon, Angiogenesis and its therapeutic opportunities, Mediators of inflammation 2013 (2013).

    Google Scholar 

  10. B. Döme, M.J. Hendrix, S. Paku, J. Tóvári, J. Tímár, Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications, The American journal of pathology 170(1) (2007) 1–15.

    Google Scholar 

  11. R. Giordo, Z. Wehbe, P. Paliogiannis, A.H. Eid, A.A. Mangoni, G. Pintus, Nano-targeting Vascular Remodelling in Cancer: Recent Developments and Future Directions, Seminars in Cancer Biology, Elsevier, 2022.

    Google Scholar 

  12. S. Qin, A. Li, M. Yi, S. Yu, M. Zhang, K. Wu, Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy, Journal of hematology & oncology 12(1) (2019) 1–11.

    CAS  Google Scholar 

  13. N.A. Shukla, M.N. Yan, N. Hanna, The story of angiogenesis inhibitors in non–small-cell lung cancer: the past, present, and future, Clinical Lung Cancer 21(4) (2020) 308–313.

    CAS  Google Scholar 

  14. S. Goel, D.G. Duda, L. Xu, L.L. Munn, Y. Boucher, D. Fukumura, R.K. Jain, Normalization of the vasculature for treatment of cancer and other diseases, Physiological reviews 91(3) (2011) 1071–1121.

    CAS  Google Scholar 

  15. Y. Yang, Y. Cao, The impact of VEGF on cancer metastasis and systemic disease, Seminars in Cancer Biology, Elsevier, 2022.

    Google Scholar 

  16. H.O. Alsaab, A.S. Al-Hibs, R. Alzhrani, K.K. Alrabighi, A. Alqathama, A. Alwithenani, A.H. Almalki, Y.S. Althobaiti, Nanomaterials for antiangiogenic therapies for cancer: a promising tool for personalized medicine, International Journal of Molecular Sciences 22(4) (2021) 1631.

    CAS  Google Scholar 

  17. S.A. Park, M.S. Jeong, K.-T. Ha, S.B. Jang, Structure and function of vascular endothelial growth factor and its receptor system, BMB reports 51(2) (2018) 73.

    CAS  Google Scholar 

  18. C. Ceci, M.G. Atzori, P.M. Lacal, G. Graziani, Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models, International journal of molecular sciences 21(4) (2020) 1388.

    CAS  Google Scholar 

  19. S. Jha, Mechanism of VEGF-C Activation and Effect on Lymphatic Vessel Growth and Regeneration, (2020).

    Google Scholar 

  20. D. Ribatti, B. Nico, E. Crivellato, A. Roccaro, A. Vacca, The history of the angiogenic switch concept, Leukemia 21(1) (2007) 44–52.

    CAS  Google Scholar 

  21. N. Ferrara, Pathways mediating VEGF-independent tumor angiogenesis, Cytokine & growth factor reviews 21(1) (2010) 21–26.

    CAS  Google Scholar 

  22. C. Hu, X. Jiang, Role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis, Targeted oncology 11(4) (2016) 501–505.

    Google Scholar 

  23. H.L. Goel, A.M. Mercurio, VEGF targets the tumour cell, Nature Reviews Cancer 13(12) (2013) 871–882.

    CAS  Google Scholar 

  24. P.R. Somanath, A. Ciocea, T.V. Byzova, Integrin and growth factor receptor alliance in angiogenesis, Cell biochemistry and biophysics 53(2) (2009) 53–64.

    CAS  Google Scholar 

  25. N.M. Pandya, N.S. Dhalla, D.D. Santani, Angiogenesis—a new target for future therapy, Vascular pharmacology 44(5) (2006) 265–274.

    CAS  Google Scholar 

  26. A. Mukherjee, V.S. Madamsetty, M.K. Paul, S. Mukherjee, Recent advancements of nanomedicine towards antiangiogenic therapy in cancer, International Journal of Molecular Sciences 21(2) (2020) 455.

    CAS  Google Scholar 

  27. R.S. Kerbel, Tumor angiogenesis: past, present and the near future, Carcinogenesis 21(3) (2000) 505–515.

    CAS  Google Scholar 

  28. V. Lai, S.Y. Neshat, A. Rakoski, J. Pitingolo, J.C. Doloff, Drug delivery strategies in maximizing anti-angiogenesis and anti-tumor immunity, Advanced Drug Delivery Reviews 179 (2021) 113920.

    CAS  Google Scholar 

  29. M.J. Ansari, D. Bokov, A. Markov, A.T. Jalil, M.N. Shalaby, W. Suksatan, S. Chupradit, H.S. Al-Ghamdi, N. Shomali, A. Zamani, Cancer combination therapies by angiogenesis inhibitors; a comprehensive review, Cell Communication and Signaling 20(1) (2022) 1–23.

    Google Scholar 

  30. M. Taleb, N. Mohammadkhani, F. Bahreini, M. Ovais, G. Nie, Modulation of Tumor Vasculature Network: Key Strategies, Small Structures (2022) 2100164.

    Google Scholar 

  31. F.H. Al-Ostoot, S. Salah, H.A. Khamees, S.A. Khanum, Tumor angiogenesis: Current challenges and therapeutic opportunities, Cancer Treatment and Research Communications 28 (2021) 100422.

    Google Scholar 

  32. E. Ioannidou, M. Moschetta, S. Shah, J.S. Parker, M.A. Ozturk, G. Pappas-Gogos, M. Sheriff, E. Rassy, S. Boussios, Angiogenesis and anti-angiogenic treatment in prostate cancer: mechanisms of action and molecular targets, International Journal of Molecular Sciences 22(18) (2021) 9926.

    CAS  Google Scholar 

  33. Y. Cao, Future options of anti-angiogenic cancer therapy, Chinese journal of cancer 35(1) (2016) 1–9.

    CAS  Google Scholar 

  34. A. Abdollahi, J. Folkman, Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy, Drug Resistance Updates 13(1-2) (2010) 16–28.

    CAS  Google Scholar 

  35. S. Mukherjee, C.R. Patra, Therapeutic application of anti-angiogenic nanomaterials in cancers, Nanoscale 8(25) (2016) 12444–12470.

    CAS  Google Scholar 

  36. P. Liang, B. Ballou, X. Lv, W. Si, M.P. Bruchez, W. Huang, X. Dong, Monotherapy and combination therapy using anti‐angiogenic nanoagents to fight cancer, Advanced Materials 33(15) (2021) 2005155.

    CAS  Google Scholar 

  37. Y. Itatani, K. Kawada, T. Yamamoto, Y. Sakai, Resistance to Anti-Angiogenic Therapy in Cancer-Alterations to Anti-VEGF Pathway, Int J Mol Sci 19(4) (2018).

    Google Scholar 

  38. F. Lopes-Coelho, F. Martins, S.A. Pereira, J. Serpa, Anti-angiogenic therapy: Current challenges and future perspectives, International Journal of Molecular Sciences 22(7) (2021) 3765.

    CAS  Google Scholar 

  39. J. Künnapuu, H. Bokharaie, M. Jeltsch, Proteolytic cleavages in the VEGF family: Generating diversity among angiogenic VEGFs, essential for the activation of lymphangiogenic VEGFs, Biology 10(2) (2021) 167.

    Google Scholar 

  40. S.J. Harper, D.O. Bates, VEGF-A splicing: the key to anti-angiogenic therapeutics?, Nature Reviews Cancer 8(11) (2008) 880–887.

    CAS  Google Scholar 

  41. A.M. Abdalla, L. Xiao, M.W. Ullah, M. Yu, C. Ouyang, G. Yang, Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics, Theranostics 8(2) (2018) 533.

    CAS  Google Scholar 

  42. G. Lupo, N. Caporarello, M. Olivieri, M. Cristaldi, C. Motta, V. Bramanti, R. Avola, M. Salmeri, F. Nicoletti, C.D. Anfuso, Anti-angiogenic therapy in cancer: downsides and new pivots for precision medicine, Frontiers in pharmacology 7 (2017) 519.

    Google Scholar 

  43. S. Loges, T. Schmidt, P. Carmeliet, Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates, Genes Cancer 1(1) (2010) 12–25.

    CAS  Google Scholar 

  44. R. Lugano, M. Ramachandran, A. Dimberg, Tumor angiogenesis: causes, consequences, challenges and opportunities, Cellular and Molecular Life Sciences 77(9) (2020) 1745–1770.

    CAS  Google Scholar 

  45. M. Caffo, S.M. Cardali, E. Fazzari, V. Barresi, G. Caruso, Nanoparticles drug-delivery systems and antiangiogenic approaches in the treatment of gliomas, Glioma 1(6) (2018) 183.

    Google Scholar 

  46. J. Jászai, M.H. Schmidt, Trends and challenges in tumor anti-angiogenic therapies, Cells 8(9) (2019) 1102.

    Google Scholar 

  47. B. Bassani, D. Baci, M. Gallazzi, A. Poggi, A. Bruno, L. Mortara, Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activities into potent anti-tumor effects, Cancers 11(4) (2019) 461.

    CAS  Google Scholar 

  48. Y. Haibe, M. Kreidieh, H. El Hajj, I. Khalifeh, D. Mukherji, S. Temraz, A. Shamseddine, Resistance mechanisms to anti-angiogenic therapies in cancer, Frontiers in oncology 10 (2020) 221.

    Google Scholar 

  49. R.N. Gacche, Y.G. Assaraf, Redundant angiogenic signaling and tumor drug resistance, Drug Resistance Updates 36 (2018) 47–76.

    Google Scholar 

  50. S. Takano, Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation, Brain tumor pathology 29(2) (2012) 73–86.

    CAS  Google Scholar 

  51. J.M. Ebos, R.S. Kerbel, Antiangiogenic therapy: impact on invasion, disease progression, and metastasis, Nature reviews Clinical oncology 8(4) (2011) 210–221.

    CAS  Google Scholar 

  52. P. Gaur, D. Bose, S. Samuel, L.M. Ellis, Targeting tumor angiogenesis, Seminars in oncology, Elsevier, 2009, pp. S12–S19.

    Google Scholar 

  53. N. Bassani, New targets in tumor angiogenesis to block tumor re-growth and therapeutic resistance, (2017).

    Google Scholar 

  54. C. Peitzsch, A. Tyutyunnykova, K. Pantel, A. Dubrovska, Cancer stem cells: The root of tumor recurrence and metastases, Seminars in cancer biology, Elsevier, 2017, pp. 10–24.

    Google Scholar 

  55. M. Furuya, Y. Yonemitsu, I. Aoki, III. Angiogenesis: complexity of tumor vasculature and microenvironment, Current pharmaceutical design 15(16) (2009) 1854–1867.

    CAS  Google Scholar 

  56. Z.R. Huinen, E.J. Huijbers, J.R. van Beijnum, P. Nowak-Sliwinska, A.W. Griffioen, Anti-angiogenic agents—overcoming tumour endothelial cell anergy and improving immunotherapy outcomes, Nature Reviews Clinical Oncology 18(8) (2021) 527–540.

    Google Scholar 

  57. R.I. Teleanu, C. Chircov, A.M. Grumezescu, D.M. Teleanu, Tumor angiogenesis and anti-angiogenic strategies for cancer treatment, Journal of clinical medicine 9(1) (2019) 84.

    Google Scholar 

  58. J.K. Tee, L.X. Yip, E.S. Tan, S. Santitewagun, A. Prasath, P.C. Ke, H.K. Ho, D.T. Leong, Nanoparticles’ interactions with vasculature in diseases, Chemical Society Reviews 48(21) (2019) 5381–5407.

    CAS  Google Scholar 

  59. M.Z. Ahmad, M. Rizwanullah, J. Ahmad, M.Y. Alasmary, M.H. Akhter, B.A. Abdel-Wahab, M.H. Warsi, A. Haque, Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy, International Journal of Polymeric Materials and Polymeric Biomaterials 71(8) (2022) 602–623.

    CAS  Google Scholar 

  60. A.B. Asha, R. Narain, Nanomaterials properties, Polymer Science and Nanotechnology, Elsevier2020, pp. 343–359.

    Google Scholar 

  61. H. Brune, H. Ernst, A. Grunwald, W. Grünwald, H. Hofmann, H. Krug, P. Janich, M. Mayor, W. Rathgeber, G. Schmid, Nanotechnology: Assessment and perspectives, Springer Science & Business Media2006.

    Google Scholar 

  62. S. Sahoo, S. Parveen, J. Panda, The present and future of nanotechnology in human health care, Nanomedicine: Nanotechnology, biology and medicine 3(1) (2007) 20–31.

    Google Scholar 

  63. Z. Cheng, M. Li, R. Dey, Y. Chen, Nanomaterials for cancer therapy: current progress and perspectives, Journal of Hematology & Oncology 14(1) (2021) 1–27.

    Google Scholar 

  64. E. Segal, R. Satchi-Fainaro, Design and development of polymer conjugates as anti-angiogenic agents, Advanced drug delivery reviews 61(13) (2009) 1159–1176.

    CAS  Google Scholar 

  65. J. Li, D.J. Burgess, Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment, Acta Pharmaceutica Sinica B 10(11) (2020) 2110–2124.

    CAS  Google Scholar 

  66. Q. Liang, L. Zhou, Y. Li, J. Liu, Y. Liu, Nano drug delivery system reconstruct tumour vasculature for the tumour vascular normalisation, Journal of Drug Targeting 30(2) (2022) 119–130.

    CAS  Google Scholar 

  67. A.S. Oguntade, F. Al-Amodi, A. Alrumayh, M. Alobaida, M. Bwalya, Anti-angiogenesis in cancer therapeutics: The magic bullet, Journal of the Egyptian National Cancer Institute 33(1) (2021) 1–11.

    Google Scholar 

  68. J. Cao, D. Huang, N.A. Peppas, Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites, Advanced Drug Delivery Reviews 167 (2020) 170–188.

    CAS  Google Scholar 

  69. M.U. Rehman, A. Khan, Z. Imtiyaz, S. Ali, H.A. Makeen, S. Rashid, A. Arafah, Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression, Seminars in cancer biology, Elsevier, 2022.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Mukherjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, S., Madamsetty, V.S. (2022). Nanomedicine: An Alternative Approach Towards Anti-angiogenic Cancer Therapy. In: Nanoparticles in Angiogenesis and Cancer. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-11284-3_3

Download citation

Publish with us

Policies and ethics