Skip to main content

Active Channel Sparsification: Realizing Frequency-Division Duplexing Massive MIMO with Minimal Overhead

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Multiuser multiple-input multiple-output (MIMO) consists of exploiting multiple antennas at the base station (BS) side, in order to multiplex over the spatial-domain several data streams to a number of users sharing the same time–frequency transmission resource (channel bandwidth and time slots).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is the number of signal dimensions over which the fading channel coefficients can be considered constant over time and frequency [56].

  2. 2.

    With this term, we indicate the number of spatial-domain data streams supported by the system, such that each stream has spectral efficiency that behaves as an interference-free Gaussian channel, i.e., \(\log \text{SNR} + O(1)\). In practice, although the system may be interference-limited (e.g., due to inter-cell interference in multicell cellular systems), a well-designed system would exhibit a regime of practically relevant SNR for which its sum rate behaves as an affine function of \(\log \text{SNR}\) [36].

  3. 3.

    As commonly defined in the CS literature, we say that a reconstruction method is stable if the resulting MSE vanishes as 1∕SNR, where SNR denotes the signal-to-noise ratio of the measurements.

  4. 4.

    From the BS perspective, AoD for the DL and AoA for the UL indicate the same domain. Hence, we shall simply refer to this as the “angle domain,” while the meaning of departure (DL) or arrival (UL) is clear from the context.

  5. 5.

    An extension of the idea to general arrays will follow later in this chapter.

  6. 6.

    By N 0 0, we mean that N 0 is approaching 0 from above.

  7. 7.

    Note that this coincides with (11.13) with B = I M, i.e., without the sparsifying precoder.

  8. 8.

    A minor of a matrix G is the determinant of some square submatrix of G.

  9. 9.

    This approach is appropriate in the medium to high-SNR regime. For low SNR, it is often convenient to increase P th in order to serve less users with a larger beamforming energy transfer per user.

  10. 10.

    Notice that by introducing noisy feedback, the relative gain with respect to J-OMP is even larger, since CS schemes are known to be more noise-sensitive than plain MMSE estimation using estimated DL covariance matrices.

References

  1. Adhikary, A., Nam, J., Ahn, J.Y., Caire, G.: Joint spatial division and multiplexing: the large-scale array regime. IEEE Trans. Inf. Theory 59(10), 6441–6463 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ali, A., González-Prelcic, N., Heath, R.W.: Millimeter wave beam-selection using out-of-band spatial information. IEEE Trans. Wirel. Commun. 17(2), 1038–1052 (2017)

    Article  Google Scholar 

  3. Bajwa, W.U., Haupt, J., Sayeed, A.M., Nowak, R.: Compressed channel sensing: A new approach to estimating sparse multipath channels. Proc. IEEE 98(6), 1058–1076 (2010)

    Article  Google Scholar 

  4. Bertsekas, D.P., Scientific, A.: Convex optimization algorithms. In: Athena Scientific Belmont (2015)

    Google Scholar 

  5. Boccardi, F., Heath, R.W., Lozano, A., Marzetta, T.L., Popovski, P.: Five disruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014)

    Article  Google Scholar 

  6. Caire, G.: On the ergodic rate lower bounds with applications to massive MIMO. IEEE Trans. Wirel. Commun. 17(5), 3258–3268 (2018)

    Article  Google Scholar 

  7. Caire, G., Jindal, N., Kobayashi, M., Ravindran, N.: Multiuser MIMO achievable rates with downlink training and channel state feedback. IEEE Trans. Inf. Theory 56(6), 2845–2866 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  9. Chan, P.W., Lo, E.S., Wang, R.R., Au, E.K., Lau, V.K., Cheng, R.S., Mow, W.H., Murch, R.D., Letaief, K.B.: The evolution path of 4G networks: FDD or TDD? IEEE Commun. Mag. 44(12), 42–50 (2006)

    Article  Google Scholar 

  10. Chen, J., Huo, X.: Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006)

    Article  MATH  Google Scholar 

  11. Dai, J., Liu, A., Lau, V.K.: FDD massive MIMO channel estimation with arbitrary 2d-array geometry. IEEE Trans. Signal Process. 66(10), 2584–2599 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davoodi, A.G., Jafar, S.A.: Aligned image sets under channel uncertainty: Settling conjectures on the collapse of degrees of freedom under finite precision CSIT. IEEE Trans. Inf. Theory 62(10), 5603–5618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Decurninge, A., Guillaud, M., Slock, D.T.: Channel covariance estimation in massive MIMO frequency division duplex systems. In: Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE, New York (2015)

    Google Scholar 

  14. Dimic, G., Sidiropoulos, n.d.: On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm. IEEE Trans. Signal Process. 53(10), 3857–3868 (2005)

    Google Scholar 

  15. Ding, Y., Rao, B.D.: Dictionary learning-based sparse channel representation and estimation for FDD massive MIMO systems. IEEE Trans. Wirel. Commun. 17(8), 5437–5451 (2018)

    Article  Google Scholar 

  16. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eldar, Y.C., Rauhut, H.: Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inf. Theory 56(1), 505–519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, X., Edfors, O., Rusek, F., Tufvesson, F.: Linear pre-coding performance in measured very-large MIMO channels. In: Proceedings of the 2011 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5. IEEE, New York (2011)

    Google Scholar 

  19. Gao, Z., Dai, L., Wang, Z., Chen, S.: Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans. Signal Process. 63(23), 6169–6183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gray, R.M.: Toeplitz and circulant matrices: A review. Foundations and TrendsⓇin Communications and Information Theory 2(3), 155–239 (2006). Now publishers inc

    Google Scholar 

  21. Grimmett, G.S., et al.: Probability and random processes. Oxford University Press, Oxford (2020)

    MATH  Google Scholar 

  22. Haghighatshoar, S., Khalilsarai, M.B., Caire, G.: Multi-band covariance interpolation with applications in massive MIMO. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp. 386–390. IEEE, New York (2018)

    Google Scholar 

  23. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  24. Hoydis, J., Hoek, C., Wild, T., ten Brink, S.: Channel measurements for large antenna arrays. In: Proceedings of the 2012 International Symposium on Wireless Communication Systems (ISWCS), pp. 811–815. IEEE, New York (2012)

    Google Scholar 

  25. Hugl, K., Kalliola, K., Laurila, J.: Spatial reciprocity of uplink and downlink radio channels in FDD systems. Proc. COST 273 Technical Document TD (02) 66, 7 (2002)

    Google Scholar 

  26. Jiang, Z., Molisch, A.F., Caire, G., Niu, Z.: Achievable rates of FDD massive MIMO systems with spatial channel correlation. IEEE Trans. Wirel. Commun. 14(5), 2868–2882 (2015)

    Article  Google Scholar 

  27. Jindal, N.: MIMO broadcast channels with finite-rate feedback. IEEE Trans. Inf. Theory 52(11), 5045–5060 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaltenberger, F., Gesbert, D., Knopp, R., Kountouris, M.: Correlation and capacity of measured multi-user MIMO channels. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008 (PIMRC 2008), pp. 1–5. IEEE, New York (2008)

    Google Scholar 

  29. Khalilsarai, M.B., Haghighatshoar, S., Yi, X., Caire, G.: FDD massive MIMO via UL/DL channel covariance extrapolation and active channel sparsification. IEEE Trans. Wirel. Commun. 18(1), 121–135 (2018)

    Article  Google Scholar 

  30. Khalilsarai, M.B., Haghighatshoar, S., Caire, G.: Joint approximate covariance diagonalization with applications in MIMO virtual beam design. In: 2020 IEEE Global Communications Conference (GLOBECOM). IEEE, New York (2020)

    Google Scholar 

  31. Klebaner, F.C.: Introduction to stochastic calculus with applications. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  32. Kobayashi, M., Jindal, N., Caire, G.: Training and feedback optimization for multiuser MIMO downlink. IEEE Trans. Commun. 59(8), 2228–2240 (2011)

    Article  Google Scholar 

  33. Kyritsi, P., Cox, D.C., Valenzuela, R.A., Wolniansky, P.W.: Correlation analysis based on MIMO channel measurements in an indoor environment. IEEE J. Sel. Areas Commun. 21(5), 713–720 (2003)

    Article  Google Scholar 

  34. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  35. Love, D.J., Heath, R.W., Strohmer, T.: Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Trans. Inf. Theory 49(10), 2735–2747 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lozano, A., Heath, R.W., Andrews, J.G.: Fundamental limits of cooperation. IEEE Trans. Inf. Theory 59(9), 5213–5226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Malkowsky, S., Vieira, J., Liu, L., Harris, P., Nieman, K., Kundargi, N., Wong, I.C., Tufvesson, F., Öwall, V., Edfors, O.: The world’s first real-time testbed for massive MIMO: Design, implementation, and validation. IEEE Access 5, 9073–9088 (2017)

    Article  Google Scholar 

  38. Manton, J.H.: Optimization algorithms exploiting unitary constraints. IEEE Trans. Signal Process. 50(3), 635–650 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marzetta, T.L.: How much training is required for multiuser MIMO? In: Fortieth Asilomar Conference on Signals, Systems and Computers, 2006 (ACSSC’06), pp. 359–363. IEEE, New York (2006)

    Google Scholar 

  40. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wireless Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  41. Marzetta, T.L., Larsson, E.G., Yang, H., Ngo, H.Q.: Fundamentals of Massive MIMO. Cambridge University, Cambridge (2016)

    Book  Google Scholar 

  42. MATLAB: version 9.9.0 (R2010b). The MathWorks Inc., Natick, Massachusetts (2020)

    Google Scholar 

  43. Miretti, L., Cavalcante, R.L.G., Stanczak, S.: FDD massive MIMO channel spatial covariance conversion using projection methods. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3609–3613. IEEE, New York (2018)

    Google Scholar 

  44. Nam, J., Adhikary, A., Ahn, J.Y., Caire, G.: Joint spatial division and multiplexing: Opportunistic beamforming, user grouping and simplified downlink scheduling. IEEE J. Sel. Top. Sign. Proces. (JSTSP) 8(5), 876–890 (2014)

    Google Scholar 

  45. Pascual-García, J., Molina-García-Pardo, J.M., Martinez-Ingles, M.T., Rodriguez, J.V., Saurin-Serrano, N.: On the importance of diffuse scattering model parameterization in indoor wireless channels at mm-wave frequencies. IEEE Access 4, 688–701 (2016)

    Article  Google Scholar 

  46. Peajcariaac, J.E., Tong, Y.L.: Convex functions, partial orderings, and statistical applications. Academic Press, London (1992)

    Google Scholar 

  47. Rao, X., Lau, V.K.: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans. Signal Process. 62(12), 3261–3271 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rayal, F.: LTE in a Nutshell: The physical layer. In: Telesystem Innovations (2010)

    Google Scholar 

  49. Richter, A.: Estimation of Radio Channel Parameters: Models and Algorithms. ISLE, Blacksburg (2005)

    Google Scholar 

  50. Richter, A., Thomä, R.S.: Parametric modeling and estimation of distributed diffuse scattering components of radio channels (2003)

    Google Scholar 

  51. Sánchez-Fernández, M., Jamali, V., Llorca, J., Tulino, A.: Gridless multidimensional angle of arrival estimation for arbitrary 3D antenna arrays. IEEE Trans. Wirel. Commun. 20(7), 4748–4764 (2021)

    Article  Google Scholar 

  52. Sayeed, A.M.: Deconstructing multiantenna fading channels. IEEE Trans. Signal Process. 50(10), 2563–2579 (2002)

    Article  Google Scholar 

  53. Sesia, S., Toufik, I., Baker, M.: LTE-the UMTS long term evolution: from theory to practice. Wiley, New York (2011)

    Book  Google Scholar 

  54. Sim, M.S., Park, J., Chae, C.B., Heath, R.W.: Compressed channel feedback for correlated massive MIMO systems. J. Commun. Networks 18(1), 95–104 (2016)

    Article  Google Scholar 

  55. Thomä, R., Landmann, M., Richter, A., Trautwein, U.: Multidimensional high-resolution channel sounding. In: Smart Antennas in Europe–State-of-the-Art, vol. 3. Hindawi Publishing Corporation, London (2005)

    Google Scholar 

  56. Tse, D., Viswanath, P.: Fundamentals of wireless communication. Cambridge University, Cambridge (2005)

    Book  MATH  Google Scholar 

  57. Xie, H., Gao, F., Zhang, S., Jin, S.: A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model. IEEE Trans. Veh. Technol. 66(4), 3170–3184 (2017)

    Article  Google Scholar 

  58. Xie, H., Gao, F., Jin, S., Fang, J., Liang, Y.C.: Channel estimation for TDD/FDD massive MIMO systems with channel covariance computing. IEEE Trans. Wirel. Commun. 17(6), 4206–4218 (2018)

    Article  Google Scholar 

  59. Yang, H., Marzetta, T.L.: Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J. Sel. Areas Commun. 31(2), 172–179 (2013)

    Article  Google Scholar 

  60. Yin, H., Gesbert, D., Filippou, M., Liu, Y.: A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J. Sel. Areas Commun. 31(2), 264–273 (2013)

    Article  Google Scholar 

  61. Zheng, L., Tse, D.N.C.: Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel. IEEE Trans. Inf. Theory 48(2), 359–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Barzegar Khalilsarai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalilsarai, M.B., Haghighatshoar, S., Yi, X., Caire, G., Wunder, G. (2022). Active Channel Sparsification: Realizing Frequency-Division Duplexing Massive MIMO with Minimal Overhead. In: Kutyniok, G., Rauhut, H., Kunsch, R.J. (eds) Compressed Sensing in Information Processing. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-09745-4_11

Download citation

Publish with us

Policies and ethics