Skip to main content

Systemic Regulation of Metastatic Disease by Extracellular Vesicles and Particles

  • Chapter
  • First Online:
  • 480 Accesses

Abstract

Cancer is a systemic disease that induces functional dysregulation in multiple tissues and organs. The great majority of cancer-related deaths are due to metastasis, a multistep process involving crosstalk between cancer cells and stromal cells and immune cells in pre-metastatic niches (PMNs) at distant organs. As message carriers, extracellular vesicles and particles (EVPs) derived from cancer cells can modulate the phenotype of recipient cells by transferring various biomolecules, including nucleic acids, proteins, metabolites and lipids, thereby contributing to PMN formation and metastasis. In this chapter, we highlight the roles of cancer cell-derived EVPs in metastasis progression, with a focus on PMN establishment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. David, A.R., Zimmerman, M.R.: Cancer: an old disease, a new disease or something in between? Nat. Rev. Cancer. 10, 728–733 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020)

    Article  PubMed  Google Scholar 

  3. Lambert, A.W., Pattabiraman, D.R., Weinberg, R.A.: Emerging biological principles of metastasis. Cell. 168, 670–691 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Obenauf, A.C., Massague, J.: Surviving at a distance: organ-specific metastasis. Trends Cancer. 1, 76–91 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Massague, J., Obenauf, A.C.: Metastatic colonization by circulating tumour cells. Nature. 529, 298–306 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valastyan, S., Weinberg, R.A.: Tumor metastasis: molecular insights and evolving paradigms. Cell. 147, 275–292 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peinado, H., et al.: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costa-Silva, B., et al.: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoshino, A., et al.: Tumour exosome integrins determine organotropic metastasis. Nature. 527, 329–335 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodrigues, G., et al.: Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 21, 1403–1412 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paget, S.: The distribution of secondary growths in cancer of the breast. Lancet. 133, 571–573 (1889)

    Article  Google Scholar 

  12. Peinado, H., et al.: Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer. 17, 302–317 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Kaplan, R.N., et al.: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438, 820–827 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wortzel, I., Dror, S., Kenific, C.M., Lyden, D.: Exosome-mediated metastasis: communication from a distance. Dev. Cell. 49, 347–360 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. Elia, I., et al.: Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 568, 117–121 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, Y., et al.: Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating Alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell. 30, 243–256 (2016)

    Article  PubMed  CAS  Google Scholar 

  17. Fong, M.Y., et al.: Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 17, 183–194 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, W., et al.: Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 25, 501–515 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, S.E.: Extracellular vesicles and metastasis. Cold Spring Harb. Perspect. Med. (2019)

    Google Scholar 

  20. Mathieu, M., Martin-Jaular, L., Lavieu, G., Thery, C.: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, H., et al.: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colombo, M., Raposo, G., Thery, C.: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. Al-Nedawi, K., et al.: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Di Vizio, D., et al.: Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69, 5601–5609 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang, Q., et al.: Transfer of functional cargo in exomeres. Cell Rep. 27, 940–954 e946 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnstone, R.M.: The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem. Cell Biol. 70, 179–190 (1992)

    Article  CAS  PubMed  Google Scholar 

  27. Harding, C., Heuser, J., Stahl, P.: Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983)

    Article  CAS  PubMed  Google Scholar 

  28. Pan, B.T., Johnstone, R.M.: Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 33, 967–978 (1983)

    Article  CAS  PubMed  Google Scholar 

  29. Haraszti, R.A., et al.: High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 5, 32570 (2016)

    Article  PubMed  CAS  Google Scholar 

  30. Zakharova, L., Svetlova, M., Fomina, A.F.: T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J. Cell. Physiol. 212, 174–181 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. Clement, E., et al.: Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J. 39, e102525 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Steinbichler, T.B., Dudas, J., Riechelmann, H., Skvortsova, I.I.: The role of exosomes in cancer metastasis. Semin. Cancer Biol. 44, 170–181 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. Tomasetti, M., Lee, W., Santarelli, L., Neuzil, J.: Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp. Mol. Med. 49, e285 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adem, B., Vieira, P.F., Melo, S.A.: Decoding the biology of exosomes in metastasis. Trends Cancer. 6, 20–30 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. Daassi, D., Mahoney, K.M., Freeman, G.J.: The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. (2020)

    Google Scholar 

  36. Kessenbrock, K., Plaks, V., Werb, Z.: Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 141, 52–67 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ginestra, A., et al.: Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. J. Biol. Chem. 272, 17216–17222 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. Dolo, V., et al.: Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res. 58, 4468–4474 (1998)

    CAS  PubMed  Google Scholar 

  39. Shan, Y., et al.: Hypoxia-induced matrix metalloproteinase-13 expression in exosomes from nasopharyngeal carcinoma enhances metastases. Cell Death Dis. 9, 382 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hakulinen, J., Sankkila, L., Sugiyama, N., Lehti, K., Keski-Oja, J.: Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J. Cell. Biochem. 105, 1211–1218 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. Mu, W., Rana, S., Zoller, M.: Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia. 15, 875–887 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Redzic, J.S., et al.: Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-beta1 and EMMPRIN. PLoS One. 8, e71225 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanchez, C.A., et al.: Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget. 7, 3993–4008 (2016)

    Article  PubMed  Google Scholar 

  44. Atay, S., et al.: Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proc. Natl. Acad. Sci. USA. 111, 711–716 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. Hinz, B., Celetta, G., Tomasek, J.J., Gabbiani, G., Chaponnier, C.: Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell. 12, 2730–2741 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalluri, R.: The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 16, 582–598 (2016)

    Article  CAS  PubMed  Google Scholar 

  47. Webber, J., Steadman, R., Mason, M.D., Tabi, Z., Clayton, A.: Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70, 9621–9630 (2010)

    Article  CAS  PubMed  Google Scholar 

  48. Webber, J.P., et al.: Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 34, 290–302 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. Ostrowski, M., et al.: Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30.; sup pp 11-13 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, Y., et al.: Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J. Exp. Clin. Cancer Res. 37, 324 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paggetti, J., et al.: Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 126, 1106–1117 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chowdhury, R., et al.: Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget. 6, 715–731 (2015)

    Article  PubMed  Google Scholar 

  53. Cho, J.A., et al.: Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol. Oncol. 123, 379–386 (2011)

    Article  CAS  PubMed  Google Scholar 

  54. Vesely, M.D., Kershaw, M.H., Schreiber, R.D., Smyth, M.J.: Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Wildes, T.J., Flores, C.T., Mitchell, D.A.: Concise review: modulating cancer immunity with hematopoietic stem and progenitor cells. Stem Cells. 37, 166–175 (2019)

    Article  PubMed  Google Scholar 

  56. Gonzalez, H., Hagerling, C., Werb, Z.: Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267–1284 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wellenstein, M.D., de Visser, K.E.: Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 48, 399–416 (2018)

    Article  CAS  PubMed  Google Scholar 

  58. McGranahan, N., et al.: Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 171, 1259–1271 e1211 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tauriello, D.V.F., et al.: TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 554, 538–543 (2018)

    Article  CAS  PubMed  Google Scholar 

  60. King, K.Y., Goodell, M.A.: Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat. Rev. Immunol. 11, 685–692 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ortiz, A., et al.: An interferon-driven oxysterol-based defense against tumor-derived extracellular vesicles. Cancer Cell. 35, 33–45 e36 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vivier, E., et al.: Innate or adaptive immunity? The example of natural killer cells. Science. 331, 44–49 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hornick, N.I., et al.: AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Sci. Signal. 9, ra88 (2016)

    Article  PubMed  CAS  Google Scholar 

  64. Yu, S., et al.: Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J. Immunol. 178, 6867–6875 (2007)

    Article  CAS  PubMed  Google Scholar 

  65. Xiang, X., et al.: Induction of myeloid-derived suppressor cells by tumor exosomes. Int. J. Cancer. 124, 2621–2633 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gabrilovich, D.I.: Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chalmin, F., et al.: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. 120, 457–471 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fleming, V., et al.: Melanoma extracellular vesicles generate immunosuppressive myeloid cells by upregulating PD-L1 via TLR4 signaling. Cancer Res. 79, 4715–4728 (2019)

    Article  CAS  PubMed  Google Scholar 

  69. Huber, V., et al.: Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest. 128, 5505–5516 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  70. Guo, X., et al.: Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene. 37, 4239–4259 (2018)

    Article  CAS  PubMed  Google Scholar 

  71. Akira, S., Uematsu, S., Takeuchi, O.: Pathogen recognition and innate immunity. Cell. 124, 783–801 (2006)

    Article  CAS  PubMed  Google Scholar 

  72. Vitale, I., Manic, G., Coussens, L.M., Kroemer, G., Galluzzi, L.: Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019)

    Article  CAS  PubMed  Google Scholar 

  73. Fabbri, M., et al.: MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA. 109, E2110–E2116 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ying, X., et al.: Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 7, 43076–43087 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cooks, T., et al.: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9, 771 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Park, J.E., et al.: Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene. 38, 5158–5173 (2019)

    Article  CAS  PubMed  Google Scholar 

  77. Palucka, K., Banchereau, J.: Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer. 12, 265–277 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu, S., et al.: EGFR E746-A750 deletion in lung cancer represses antitumor immunity through the exosome-mediated inhibition of dendritic cells. Oncogene. (2020)

    Google Scholar 

  79. Ding, G., et al.: Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 6, 29877–29888 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  80. Guillerey, C., Huntington, N.D., Smyth, M.J.: Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17, 1025–1036 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. Baginska, J., et al.: The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front. Immunol. 4, 490 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Han, B., et al.: Altered NKp30, NKp46, NKG2D, and DNAM-1 expression on circulating NK cells is associated with tumor progression in human gastric cancer. J Immunol Res. 2018, 6248590 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Viel, S., et al.: TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal. 9, ra19 (2016)

    Article  PubMed  CAS  Google Scholar 

  84. Zhao, J.G., et al.: Tumor-derived extracellular vesicles inhibit natural killer cell function in pancreatic cancer. Cancers. 11 (2019)

    Google Scholar 

  85. Lundholm, M., et al.: Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One. 9, e108925 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Liu, C., et al.: Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J. Immunol. 176, 1375–1385 (2006)

    Article  CAS  PubMed  Google Scholar 

  87. Coffelt, S.B., Wellenstein, M.D., de Visser, K.E.: Neutrophils in cancer: neutral no more. Nat. Rev. Cancer. 16, 431–446 (2016)

    Article  CAS  PubMed  Google Scholar 

  88. Kowanetz, M., et al.: Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl. Acad. Sci. USA. 107, 21248–21255 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Granot, Z., et al.: Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 20, 300–314 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, Y.W., et al.: Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J. Hepatol. 54, 497–505 (2011)

    Article  PubMed  CAS  Google Scholar 

  91. Zhao, J.J., et al.: The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PLoS One. 7, e33655 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jensen, H.K., et al.: Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J. Clin. Oncol. 27, 4709–4717 (2009)

    Article  PubMed  Google Scholar 

  93. Schmidt, H., et al.: Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br. J. Cancer. 93, 273–278 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Casbon, A.J., et al.: Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc. Natl. Acad. Sci. USA. 112, E566–E575 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bayne, L.J., et al.: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 21, 822–835 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Coffelt, S.B., et al.: IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 522, 345–348 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, D., Sun, H., Wei, J., Cen, B., DuBois, R.N.: CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77, 3655–3665 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shaul, M.E., Fridlender, Z.G.: Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 16, 601–620 (2019)

    Article  PubMed  Google Scholar 

  99. Andzinski, L., et al.: Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer. 138, 1982–1993 (2016)

    Article  CAS  PubMed  Google Scholar 

  100. Fridlender, Z.G., et al.: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 16, 183–194 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, X., et al.: Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol. Cancer. 17, 146 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hwang, W.L., Lan, H.Y., Cheng, W.C., Huang, S.C., Yang, M.H.: Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J. Hematol. Oncol. 12, 10 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  103. Leal, A.C., et al.: Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci. Rep. 7, 6438 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Brinkmann, V., et al.: Neutrophil extracellular traps kill bacteria. Science. 303, 1532–1535 (2004)

    Article  CAS  PubMed  Google Scholar 

  105. Demers, M., et al.: Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl. Acad. Sci. USA. 109, 13076–13081 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Park, J., et al.: Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 8, 361ra138 (2016)

    PubMed  PubMed Central  Google Scholar 

  107. Cools-Lartigue, J., et al.: Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. (2013)

    Google Scholar 

  108. Litman, G.W., Rast, J.P., Fugmann, S.D.: The origins of vertebrate adaptive immunity. Nat. Rev. Immunol. 10, 543–553 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Razzo, B.M., et al.: Tumor-derived exosomes promote carcinogenesis of murine oral squamous cell carcinoma. Carcinogenesis. (2019)

    Google Scholar 

  110. Wang, X., et al.: 14-3-3zeta delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis. 9, 159 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mirzaei, R., et al.: Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. Onco. Targets. Ther. 7, e1478647 (2018)

    Google Scholar 

  112. Griss, J., et al.: B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Garaud, S., et al.: Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight. 5 (2019)

    Google Scholar 

  114. Meng, Q., Valentini, D., Rao, M., Maeurer, M.: KRAS renaissance(s) in tumor infiltrating B cells in pancreatic cancer. Front. Oncol. 8, 384 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pylayeva-Gupta, Y., et al.: IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 6, 247–255 (2016)

    Article  CAS  PubMed  Google Scholar 

  116. Xiao, X., et al.: PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov. 6, 546–559 (2016)

    Article  CAS  PubMed  Google Scholar 

  117. Ye, L., et al.: Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1(+) regulatory B cell expansion. J. Immunother. Cancer. 6, 145 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  118. Katoh, M.: Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int. J. Mol. Med. 32, 763–767 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. De Palma, M., Biziato, D., Petrova, T.V.: Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer. 17, 457–474 (2017)

    Article  PubMed  CAS  Google Scholar 

  120. Sawamiphak, S., et al.: Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 465, 487–491 (2010)

    Article  CAS  PubMed  Google Scholar 

  121. Sato, S., et al.: EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight. 4 (2019)

    Google Scholar 

  122. Jung, K.O., Youn, H., Lee, C.H., Kang, K.W., Chung, J.K.: Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells. Oncotarget. 8, 9899–9910 (2017)

    Article  PubMed  Google Scholar 

  123. Lanahan, A.A., et al.: PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation. 130, 902–909 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Umezu, T., et al.: Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 124, 3748–3757 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, B.B., et al.: piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene. 38, 5227–5238 (2019)

    Article  CAS  PubMed  Google Scholar 

  126. Treps, L., Perret, R., Edmond, S., Ricard, D., Gavard, J.: Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J. Extracell. Vesicles. 6, 1359479 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Ko, S.Y., et al.: Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun. Biol. 2, 386 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Strilic, B., Offermanns, S.: Intravascular survival and extravasation of tumor cells. Cancer Cell. 32, 282–293 (2017)

    Article  CAS  PubMed  Google Scholar 

  129. Mohme, M., Riethdorf, S., Pantel, K.: Circulating and disseminated tumour cells – mechanisms of immune surveillance and escape. Nat. Rev. Clin. Oncol. 14, 155–167 (2017)

    Article  CAS  PubMed  Google Scholar 

  130. Treps, L., et al.: Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene. 35, 2615–2623 (2016)

    Article  CAS  PubMed  Google Scholar 

  131. Zeng, Z., et al.: Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bhattacharya, R., et al.: Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J. Biol. Chem. 280, 28848–28851 (2005)

    Article  CAS  PubMed  Google Scholar 

  133. Ma, J., et al.: Kruppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5. J. Cell. Physiol. 229, 916–926 (2014)

    Article  CAS  PubMed  Google Scholar 

  134. Hsu, Y.L., et al.: Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 36, 4929–4942 (2017)

    Article  CAS  PubMed  Google Scholar 

  135. Di Modica, M., et al.: Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers. Cancer Lett. 384, 94–100 (2017)

    Article  PubMed  CAS  Google Scholar 

  136. Fang, J.H., et al.: Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology. 68, 1459–1475 (2018)

    Article  CAS  PubMed  Google Scholar 

  137. Li, J., et al.: Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J. Exp. Clin. Cancer Res. 37 (2018)

    Google Scholar 

  138. Hansen, T.B., et al.: Natural RNA circles function as efficient microRNA sponges. Nature. 495, 384–388 (2013)

    Article  CAS  PubMed  Google Scholar 

  139. Fidler, I.J., Nicolson, G.L.: Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J. Natl. Cancer Inst. 57, 1199–1202 (1976)

    Article  CAS  PubMed  Google Scholar 

  140. Hart, I.R., Fidler, I.J.: Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281–2287 (1980)

    CAS  PubMed  Google Scholar 

  141. Gao, Y., et al.: Metastasis organotropism: redefining the congenial soil. Dev. Cell. 49, 375–391 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nguyen, D.X., Bos, P.D., Massague, J.: Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer. 9, 274–U265 (2009)

    Article  CAS  PubMed  Google Scholar 

  143. Hood, J.L., San, R.S., Wickline, S.A.: Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71, 3792–3801 (2011)

    Article  CAS  PubMed  Google Scholar 

  144. Xiao, Z., et al.: Molecular mechanism underlying lymphatic metastasis in pancreatic cancer. Biomed. Res. Int. 2014, 925845 (2014)

    PubMed  PubMed Central  Google Scholar 

  145. Pucci, F., et al.: SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science. 352, 242–246 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Maus, R.L.G., et al.: Human melanoma-derived extracellular vesicles regulate dendritic cell maturation. Front. Immunol. 8, 358 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Rana, S., Malinowska, K., Zoller, M.: Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia. 15, 281–295 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Srinivasan, S., Vannberg, F.O., Dixon, J.B.: Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 6, 24436 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen, C., et al.: Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J. Clin. Invest. 130, 404–421 (2020)

    Article  CAS  PubMed  Google Scholar 

  150. Sun, B., et al.: Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. Int. J. Cancer. 145, 1648–1659 (2019)

    Article  CAS  PubMed  Google Scholar 

  151. Randolph, G.J., Ivanov, S., Zinselmeyer, B.H., Scallan, J.P.: The lymphatic system: integral roles in immunity. Annu. Rev. Immunol. 35, 31–52 (2017)

    Article  CAS  PubMed  Google Scholar 

  152. Chow, A., et al.: Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Sci. Rep. 4, 5750 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Muhsin-Sharafaldine, M.R., Saunderson, S.C., Dunn, A.C., McLellan, A.D.: Melanoma growth and lymph node metastasis is independent of host CD169 expression. Biochem. Biophys. Res. Commun. 486, 965–970 (2017)

    Article  CAS  PubMed  Google Scholar 

  154. Skobe, M., et al.: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7, 192–198 (2001)

    Article  CAS  PubMed  Google Scholar 

  155. Stacker, S.A., et al.: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med. 7, 186–191 (2001)

    Article  CAS  PubMed  Google Scholar 

  156. Stacker, S.A., et al.: Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer. 14, 159–172 (2014)

    Article  CAS  PubMed  Google Scholar 

  157. Park, R.J., Hong, Y.J., Wu, Y., Kim, P.M., Hong, Y.K.: Exosomes as a communication tool between the lymphatic system and bladder cancer. Int. Neurourol. J. 22, 220–224 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zhou, C.F., et al.: Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 38, 1256–1268 (2019)

    Article  CAS  PubMed  Google Scholar 

  159. Hautmann, R.E., de Petriconi, R.C., Pfeiffer, C., Volkmer, B.G.: Radical cystectomy for urothelial carcinoma of the bladder without neoadjuvant or adjuvant therapy: long-term results in 1100 patients. Eur. Urol. 61, 1039–1047 (2012)

    Article  PubMed  Google Scholar 

  160. Liu, D., et al.: CD97 promotion of gastric carcinoma lymphatic metastasis is exosome dependent. Gastric Cancer. 19, 754–766 (2016)

    Article  CAS  PubMed  Google Scholar 

  161. Morton, D.L., et al.: Sentinel-node biopsy or nodal observation in melanoma. N. Engl. J. Med. 355, 1307–1317 (2006)

    Article  CAS  PubMed  Google Scholar 

  162. Cheng, L., et al.: Cancer volume of lymph node metastasis predicts progression in prostate cancer. Am. J. Surg. Pathol. 22, 1491–1500 (1998)

    Article  CAS  PubMed  Google Scholar 

  163. Im, E.J., et al.: Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat. Commun. 10, 1387 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Altorki, N.K., et al.: The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer. 19, 9–31 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Erler, J.T., et al.: Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 15, 35–44 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fang, T., et al.: Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 9, 191 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Trefts, E., Gannon, M., Wasserman, D.H.: The liver. Curr. Biol. 27, R1147–R1151 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, H., et al.: Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun. 8, 15016 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shao, Y., et al.: Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis. 39, 1368–1379 (2018)

    Article  CAS  PubMed  Google Scholar 

  170. Mundy, G.R.: Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer. 2, 584–593 (2002)

    Article  CAS  PubMed  Google Scholar 

  171. Cao, X.: RANKL-RANK signaling regulates osteoblast differentiation and bone formation. Bone Res. 6, 35 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Tiedemann, K., et al.: Exosomal release of L-plastin by breast cancer cells facilitates metastatic bone osteolysis. Transl. Oncol. 12, 462–474 (2019)

    Article  PubMed  Google Scholar 

  173. Guo, L., et al.: Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med. 8, 5687–5701 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Probert, C., et al.: Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis. Oncogene. 38, 1751–1763 (2019)

    Article  CAS  PubMed  Google Scholar 

  175. Ye, Y., et al.: Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget. 8, 94834–94849 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lacey, D.L., et al.: Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 11, 401–419 (2012)

    Article  CAS  PubMed  Google Scholar 

  177. Hashimoto, K., et al.: Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc. Natl. Acad. Sci. USA. 115, 2204–2209 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tominaga, N., et al.: Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat. Commun. 6, 6716 (2015)

    Article  CAS  PubMed  Google Scholar 

  179. Xing, F., et al.: Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to promote brain metastasis. Cancer Res. 78, 4316–4330 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gener Lahav, T., et al.: Melanoma-derived extracellular vesicles instigate proinflammatory signaling in the metastatic microenvironment. Int. J. Cancer. 145, 2521–2534 (2019)

    Article  CAS  PubMed  Google Scholar 

  181. Sweeney, M.D., Zhao, Z., Montagne, A., Nelson, A.R., Zlokovic, B.V.: Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019)

    Article  CAS  PubMed  Google Scholar 

  182. Morad, G., et al.: Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis. ACS Nano. 13, 13853–13865 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xu, Z.H., et al.: Brain microvascular endothelial cell exosome-mediated S100A16 up-regulation confers small-cell lung cancer cell survival in brain. FASEB J. 33, 1742–1757 (2019)

    Article  CAS  PubMed  Google Scholar 

  184. Zhang, L., et al.: Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 527, 100–104 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chen, G., et al.: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560, 382–386 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Balaj, L., et al.: Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011)

    Article  PubMed  CAS  Google Scholar 

  187. Guescini, M., Genedani, S., Stocchi, V., Agnati, L.F.: Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. (Vienna). 117, 1–4 (2010)

    Article  CAS  Google Scholar 

  188. Thakur, B.K., et al.: Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sharma, A., Johnson, A.: Exosome DNA: critical regulator of tumor immunity and a diagnostic biomarker. J. Cell. Physiol. 235, 1921–1932 (2020)

    Article  CAS  PubMed  Google Scholar 

  190. Kitai, Y., et al.: DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198, 1649–1659 (2017)

    Article  CAS  PubMed  Google Scholar 

  191. Xu, M.M., et al.: Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein alpha signaling. Immunity. 47, 363-+ (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Puhka, M., et al.: Metabolomic profiling of extracellular vesicles and alternative normalization methods reveal enriched metabolites and strategies to study prostate cancer-related changes. Theranostics. 7, 3824–3841 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lai, C.P., et al.: Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015)

    Article  CAS  PubMed  Google Scholar 

  194. Zomer, A., et al.: In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 161, 1046–1057 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zomer, A., Steenbeek, S.C., Maynard, C., van Rheenen, J.: Studying extracellular vesicle transfer by a Cre-loxP method. Nat. Protoc. 11, 87–101 (2016)

    Article  CAS  PubMed  Google Scholar 

  196. Hyenne, V., et al.: Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev. Cell. 48, 554–572 e557 (2019)

    Article  CAS  PubMed  Google Scholar 

  197. Fearon, K.C., Glass, D.J., Guttridge, D.C.: Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16, 153–166 (2012)

    Article  CAS  PubMed  Google Scholar 

  198. Porporato, P.E.: Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 5 (2016)

    Google Scholar 

  199. Wang, G., et al.: Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat. Med. 24, 770–781 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Baracos, V.E., Martin, L., Korc, M., Guttridge, D.C., Fearon, K.C.H.: Cancer-associated cachexia. Nat. Rev. Dis. Primers. 4, 17105 (2018)

    Article  PubMed  Google Scholar 

  201. Miao, C., et al.: Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia. Mol. Ther. Nucleic Acids. 24, 923–938 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, G., et al.: Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat. Commun. 8, 589 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. He, W.A., et al.: Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc. Natl. Acad. Sci. USA. 111, 4525–4529 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sagar, G., et al.: Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut. 65, 1165–1174 (2016)

    Article  CAS  PubMed  Google Scholar 

  205. Wang, S., Li, X., Xu, M., Wang, J., Zhao, R.C.: Reduced adipogenesis after lung tumor exosomes priming in human mesenchymal stem cells via TGFbeta signaling pathway. Mol. Cell. Biochem. 435, 59–66 (2017)

    Article  CAS  PubMed  Google Scholar 

  206. Petruzzelli, M., et al.: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014)

    Article  CAS  PubMed  Google Scholar 

  207. Wu, Q., et al.: Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression. Mol. Cancer. 17, 155 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Di, W.J., et al.: Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p. J. Cell. Physiol. 236, 5399–5410 (2021)

    Article  CAS  PubMed  Google Scholar 

  209. Manger, B., Schett, G.: Paraneoplastic syndromes in rheumatology. Nat. Rev. Rheumatol. 10, 662–670 (2014)

    Article  CAS  PubMed  Google Scholar 

  210. Javeed, N., et al.: Pancreatic cancer-derived exosomes cause paraneoplastic beta-cell dysfunction. Clin. Cancer Res. 21, 1722–1733 (2015)

    Article  CAS  PubMed  Google Scholar 

  211. Lima, L.G., Leal, A.C., Vargas, G., Porto-Carreiro, I., Monteiro, R.Q.: Intercellular transfer of tissue factor via the uptake of tumor-derived microvesicles. Thromb. Res. 132, 450–456 (2013)

    Article  CAS  PubMed  Google Scholar 

  212. Gomes, F.G., et al.: Breast-cancer extracellular vesicles induce platelet activation and aggregation by tissue factor-independent and -dependent mechanisms. Thromb. Res. 159, 24–32 (2017)

    Article  CAS  PubMed  Google Scholar 

  213. Wefel, J.S., Vardy, J., Ahles, T., Schagen, S.B.: International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 12, 703–708 (2011)

    Article  PubMed  Google Scholar 

  214. Koh, Y.Q., et al.: Role of exosomes in cancer-related cognitive impairment. Int. J. Mol. Sci. 21 (2020)

    Google Scholar 

  215. Jabbari, N., Nawaz, M., Rezaie, J.: Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: a possible way to communicate resistance against radiotherapy. Int. J. Mol. Sci. 20 (2019)

    Google Scholar 

  216. Bandari, S.K., et al.: Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol. 65, 104–118 (2018)

    Article  CAS  PubMed  Google Scholar 

  217. Chen, E.I., et al.: Identifying predictors of taxane-induced peripheral neuropathy using mass spectrometry-based proteomics technology. PLoS One. 10 (2015)

    Google Scholar 

  218. LeBleu, V.S., Kalluri, R.: Exosomes as a multicomponent biomarker platform in cancer. Trends Cancer. (2020)

    Google Scholar 

  219. Zhang, W., et al.: MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur. Urol. Focus. 4, 412–419 (2018)

    Article  PubMed  Google Scholar 

  220. Yang, K.S., et al.: Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci. Transl. Med. 9 (2017)

    Google Scholar 

  221. Li, P., Kaslan, M., Lee, S.H., Yao, J., Gao, Z.: Progress in exosome isolation techniques. Theranostics. 7, 789–804 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Senkus, E., Jassem, J.: Cardiovascular effects of systemic cancer treatment. Cancer Treat. Rev. 37, 300–311 (2011)

    Article  CAS  PubMed  Google Scholar 

  223. Sanmamed, M.F., Chen, L.: A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 175, 313–326 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chen, L., Han, X.: Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J. Clin. Invest. 125, 3384–3391 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  225. Page, D.B., Postow, M.A., Callahan, M.K., Allison, J.P., Wolchok, J.D.: Immune modulation in cancer with antibodies. Annu. Rev. Med. 65, 185–202 (2014)

    Article  CAS  PubMed  Google Scholar 

  226. Poggio, M., et al.: Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 177, 414–427 e413 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Luan, X., et al.: Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 38, 754–763 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lin, X., DeAngelis, L.M.: Treatment of brain metastases. J. Clin. Oncol. 33, 3475–3484 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Tian, Y., et al.: A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 35, 2383–2390 (2014)

    Article  CAS  PubMed  Google Scholar 

  230. Kamerkar, S., et al.: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 546, 498–503 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Munagala, R., et al.: Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett. 393, 94–102 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the following funding sources: the National Cancer Institute CA224175 (to D.L.), CA210240 (to D.L.), CA232093 (to D.L.), CA163117 (to D.L.), CA207983 (to D.L.), CA163120 (to D.L.), CA169416 (to D.L.), CA169538 (to D.L.), CA218513 (to D.L. and H.Z.) and AI144301 (to D.L.), the United States Department of Defense (W81XWH-13-1-0425, W81XWH-13-1-0427, W81XWH-13-1-0249 and W81XWH-14-1-0199 (to D.L.)), the Malcolm Hewitt Weiner Foundation (to D.L.), the Hartwell Foundation (to D.L.), the Manning Foundation (to D.L.), the Thompson Family Foundation (to D.L.), The Daniel P. and Nancy C. Paduano Family Foundation (to D.L.), the James Paduano Foundation (to D.L.), the Sohn Foundation (to D.L.), the STARR Consortium I9-A9-056 (to D.L. and H.Z.), the STARR Consortium I8-A8-123 (to D.L.), the AHEPA Vth District Cancer Research Foundation (to D.L.), the Pediatric Oncology Experimental Therapeutics Investigator’s Consortium (to D.L.), the Alex’s Lemonade Stand Foundation (to D.L.), the Breast Cancer Research Foundation (to D.L.), the Daedalus Fund (Weill Cornell Medicine, to D.L.), the Feldstein Medical Foundation (to D.L.), the Tortolani Foundation (to D.L.), the Children’s Cancer and Blood Foundation (to D.L.), the Clinical & Translational Science Center (to D.L. and H.Z.), the Mary K. Ash Charitable Foundation (to D.L.), the Selma and Lawrence Ruben Science to Industry Bridge Fund (to D.L.). Figures were created using the templates from Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lyden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, G., Kenific, C.M., Lieberman, G., Zhang, H., Lyden, D. (2022). Systemic Regulation of Metastatic Disease by Extracellular Vesicles and Particles. In: Acharyya, S. (eds) The Systemic Effects of Advanced Cancer. Springer, Cham. https://doi.org/10.1007/978-3-031-09518-4_2

Download citation

Publish with us

Policies and ethics