Skip to main content

Semantic Segmentation of Abnormal Lung Areas on Chest X-rays to Detect COVID-19

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1429))

Abstract

The main objective of this study was to effectively segment the lung tissue area in chest radiograms (called a chest X-ray: CXR). The results of conducted analysis were related to the requirements of effective detection and description of COVID-19 (C-19) symptoms to support the diagnosis of this disease. The proposed method uses the concept of representing the chest radiogram using a dictionary of matched lung shape patterns in reference CXRs. The initial lung shape approximation is then corrected by non-rigid registration based on the tissue texture distribution. The optimization criteria used emphasize tissue features that may have diagnostic significance. We refer to this as the semantic, more reliable lung segmentation required by C-19 diagnostic support. The obtained efficiency is comparable to the best ML reference methods and not far from the average efficiency of DL methods. The relatively high values of the minimum fit indices demonstrate the stability and reliability of the segmentation performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mardian, Y., Kosasih, H., et al.: Review of current COVID-19 diagnostics and opportunities for further development. Front. Med. 8, 615099 (2021)

    Article  Google Scholar 

  2. Laskar, P., Yallapu, M.M., Chauhan, S.C.: “Tomorrow Never Dies’’: Recent advances in diagnosis, treatment, and prevention modalities against coronavirus (COVID-19) amid controversies. Diseases 8, 30 (2020)

    Article  Google Scholar 

  3. Yamac, M., Ahishali, M., et al.: Convolutional sparse support estimator-based COVID-19 recognition from X-ray images. IEEE Tran. Neura Networks Learn. Syst. 32(5), 1810–1820 (2021)

    Article  Google Scholar 

  4. Lopez-Cabrera, J.D., Orozco-Morales, R., et al.: Current limitations to identify COVID-19 using artifcial intelligence with chest X-ray imaging. Health Technol. 11, 411–24 (2021)

    Article  Google Scholar 

  5. Flor, N., et al.: Diagnostic performance of chest radiography in high COVID-19 prevalence setting: experience from a European reference hospital. Emergency Radiol. 28(5), 877–885 (2021). https://doi.org/10.1007/s10140-021-01946-x

    Article  Google Scholar 

  6. Reamaroon, N., Sjoding, M.W., et al.: Robust segmentation of lung in chest x-ray: applications in analysis of acute respiratory distress syndrome. BMC Med. Imaging 20, 116 (2020)

    Article  Google Scholar 

  7. Liu, X., Li, K.-W., et al.: Review of deep learning based automatic segmentation for lung cancer radiotherapy. Front. Oncol. 11, 717039 (2021)

    Article  Google Scholar 

  8. Candemir, S., Jaeger, S., Palaniappan, K., et al.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Tran. Med. Imaging 33(2), 577–590 (2014)

    Article  Google Scholar 

  9. Candemir, S., Antani, S.: A review on lung boundary detection in chest X-rays. Int. J. Comput. Assist. Radiol. Surg. 14(4), 563–576 (2019). https://doi.org/10.1007/s11548-019-01917-1

    Article  Google Scholar 

  10. Teixeira, L.O., Pereira, R.M., Bertolini, D., et al.: Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images. Sensors 21, 7116 (2021)

    Article  Google Scholar 

  11. Calli, E., Sogancioglu, E., et al.: Deep learning for chest X-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021)

    Article  Google Scholar 

  12. Maguolo, G., Nanni, L.: A critic evaluation of methods for COVID-19 automatic detection from X-ray images. Inf. Fusion 76, 1–7 (2021)

    Article  Google Scholar 

  13. Yu, Y., Hu, P., Lin, J., Krishnaswamy, P.: Multimodal multitask deep learning for X-ray image retrieval. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 603–613. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_58

    Chapter  Google Scholar 

  14. Stengers, I.: Thinking with Whitehead: A Free and Wild Creation of Concepts. Harvard University Press, Cambridge (2014)

    Google Scholar 

  15. Wang, H., Wang, Q., et al.: Multi-scale location-aware kernel representation for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1248–57 (2018)

    Google Scholar 

  16. Thompson, J.R.: Empirical Model Building: Data, Models, and Reality. Wiley, Hoboken (2011)

    Book  Google Scholar 

  17. Hassanien, A.E., Mahdy, L.N., et al.: Automatic xray covid-19 lung image classification system based on multi-level thresholding and support vector machine. medRxiv (2020)

    Google Scholar 

  18. Mohammed, S.N., Alkinani, F.S., Hassan, Y.A.: Automatic computer aided diagnostic for COVID-19 based on chest X-ray image and particle swarm intelligence. Int. J. Intell. Eng. Syst. 13, 5 (2020)

    Google Scholar 

  19. Philipsen, R.H.H.M., Maduskar, P., et al.: Localized energy-based normalization of medical images: application to chest radiography. IEEE Trans. Med. Imaging 34(9), 1965–1975 (2015)

    Article  Google Scholar 

  20. Chen, S., Cai, Y.: Enhancement of chest radiograph in emergency intensive care unit by means of reverse anisotropic diffusion-based unsharp masking model. Diagnostics 9, 45 (2019)

    Article  Google Scholar 

  21. Khodaskar, A., Ladhake, S.: Semantic image analysis for intelligent image retrieval. Procedia Comput. Sci. 48, 192–197 (2015)

    Article  Google Scholar 

  22. Chenggang, L.L., Yan, C., et al.: Distributed image understanding with semantic dictionary and semantic expansion. Neurocomputing 174(A), 384–392 (2016)

    Google Scholar 

  23. DeVore, R.A.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    Article  Google Scholar 

  24. Zhong, A., Li, X., et al.: Deep metric learning-based image retrieval system for chest radiograph and its clinical applications in COVID-19. Med. Image Anal. 70, 101993 (2021)

    Article  Google Scholar 

  25. Shiraishi, J., Katsuragawa, S., Ikezoe, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver Operating Characteristic analysis of radiologists’ detection of pulmonary nodules. AJR 174, 71–74 (2000)

    Article  Google Scholar 

  26. Jeager, S., Candemir, S., et al.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475–477 (2014)

    Google Scholar 

  27. Pogarell, T., Bayer, N., et al.: Evaluation of a novel content-based image retrieval system for the differentiation of interstitial lung diseases in CT examinations. Diagnostics 11, 2114 (2021)

    Article  Google Scholar 

  28. Nonrigid registration of lung CT images based on tissue features. Comput. Math. Meth. Med. 834192, 1–7 (2013)

    Google Scholar 

  29. Sampat, M.P., Wang, Z., et al.: Complex wavelet structural similarity: a new image similarity index. IEEE Tran. Image Proc. 18(11), 2385–2401 (2009)

    Article  MathSciNet  Google Scholar 

  30. Nabizadeh-Shahre-Babak, Z., Karimi, N., et al.: Detection of COVID-19 in X-ray images by classification of bag of visual words using neural networks. Biomed. Signal Process. Control 68, 102750 (2021)

    Article  Google Scholar 

  31. Liu, C., Yuen, J., Torralba, A.: SIFT flow: dense correspondence across different scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)

    Article  Google Scholar 

  32. Ashour, A.S., Eissa, M.M., et al.: Ensemble-based bag of features for automated classification of normal and COVID-19 CXR images. Biomed. Signal Process. Control 68, 102656 (2021)

    Article  Google Scholar 

  33. Moitra, D., Mandal, R.K.: Automated AJCC (7th edition) staging of non-small cell lung cancer (NSCLC) using deep convolutional neural network (CNN) and recurrent neural network (RNN). Health Inf Sci Syst. 7(1), 14 (2019)

    Google Scholar 

  34. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 886–893 (2005)

    Google Scholar 

  35. Moskal, A., Jasionowska-Skop, M., Ostrek, G., Przelaskowski, A.: Artifact detection on X-ray images of lung with COVID-19 symptoms. Submitted to IBIB 2022

    Google Scholar 

  36. Nguyen, H.Q., Lam, K., et al.: VinDr-CXR: an open dataset of chest X-rays with radiologist’s annotations. arXiv:2012.15029

  37. YangW, W., Liu, Y., et al.: Lung field segmentation in chest radiographs from boundary maps by a structured edge detector. IEEE J. BiomedHealth Inform. 22(3), 842–851 (2018)

    Article  Google Scholar 

  38. Ginneken, B., Stegmann, M., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006)

    Article  Google Scholar 

  39. Shao, Y., Gao, Y., et al.: Hierarchical lung field segmentation with joint shape and appearance sparse learning. IEEE Trans. Med. Imaging 33(9), 1761–1780 (2014)

    Article  Google Scholar 

  40. Dawoud, A.: Lung segmentation in chest radiographs by fusing shape information in iterative thresholding. IET Comput. Vis. 5(3), 185–190 (2011)

    Article  Google Scholar 

  41. Novikov, A., Major, D., et al.: Fully convolutional architectures for multi-class segmentation in chest radiographs. IEEE Trans. Med. Imaging 37(8), 1865–76 (2018)

    Article  Google Scholar 

  42. Kalinovsky, A., Kovalev, V.: Lung image segmentation using deep learning methods and convolutional neural networks. Pattern recognition and information processing. Publishing Center of BSU, Minsk (2016)

    Google Scholar 

  43. Hwang, S., Park, S.: Accurate lung segmentation via network-wise training of convolutional networks. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 92–99. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Przelaskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Przelaskowski, A., Jasionowska-Skop, M., Ostrek, G. (2022). Semantic Segmentation of Abnormal Lung Areas on Chest X-rays to Detect COVID-19. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_21

Download citation

Publish with us

Policies and ethics