Skip to main content

Directed Graph Encoding in Quantum Computing Supporting Edge-Failures

  • Conference paper
  • First Online:
Reversible Computation (RC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13354))

Included in the following conference series:

  • 446 Accesses

Abstract

Graphs are one of the most common data structures in classical computer science and graph theory has been widely used in complexity and computability. Recently, the use of graphs in application domains such as routing, network analysis and resource allocation has become crucial. In these areas, graphs are often evolving in time: for example, connection links may fail due to temporary technical issues, meaning that edges of the graph cannot be traversed for some time interval and alternative paths have to be followed. In classical computation, where graphs are represented as adjacency matrices or lists, these problems are well studied and ad-hoc visit procedures have been developed. For specific problems quantum computation, through superpositions and entanglement has provided faster algorithms than their classical counterpart. However, in this model, only reversible operations are allowed and this poses the quest of augmenting a graph in order to be able to reverse edge traversals. In this paper we present a novel graph representation in quantum computation supporting dynamic connectivity typical of real-world network applications. Our proposal has the advantage of being closer than others in literature to the adjacency matrix of the graph. This makes easy dynamic edge-failure modeling. We introduce optimal algorithms for computing our graph encoding and we show the effectiveness of our proposal with some examples.

This work is partially supported by PRIN MUR project Noninterference and Reversibility Analysis in Private Blockchains (NiRvAna) - 20202FCJM and by GNCS INdAM project LESLIE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 50–59 (2001)

    Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory, Algorithms and Applications. Pearson, London (1993)

    Google Scholar 

  3. Alzetta, G., Marin, A., Piazza, C., Rossi, S.: Lumping-based equivalences in markovian automata: algorithms and applications to product-form analyses. Inf. Comput. 260, 99–125 (2018)

    Article  MathSciNet  Google Scholar 

  4. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1(04), 507–518 (2003)

    Article  Google Scholar 

  5. Ambainis, A., Schulman, L.J., Vazirani, U.V.: Computing with highly mixed states. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 697–704 (2000)

    Google Scholar 

  6. Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor. Comput. Sci. 320(1), 15–33 (2004)

    Article  MathSciNet  Google Scholar 

  7. Chung, F.: Laplacians and the cheeger inequality for directed graphs. Ann. Comb. 9(1), 1–19 (2005)

    Article  MathSciNet  Google Scholar 

  8. Çinlar, E.: Probability and Stochastics, vol. 261. Springer, New York (2011). https://doi.org/10.1007/978-0-387-87859-1

  9. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized complexity of eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)

    Article  MathSciNet  Google Scholar 

  10. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 439(1907), 553–558 (1992)

    Google Scholar 

  11. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  12. Edmonds, J., Johnson, E.L.: Matching, euler tours and the Chinese postman. Math. Program. 5(1), 88–124 (1973)

    Article  MathSciNet  Google Scholar 

  13. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1998)

    Article  MathSciNet  Google Scholar 

  14. Godsil, C., Zhan, H.: Discrete-time quantum walks and graph structures. J. Comb. Theor. Ser. A 167, 181–212 (2019)

    Article  MathSciNet  Google Scholar 

  15. Harary, F.: Graph Theory. Addison Wesley Series in Mathematics. Addison-Wesley, Boston (1971)

    Google Scholar 

  16. Haykin, S.: Neural Networks and Learning Machines, 3/E. Pearson Education India, Chennai (2010)

    Google Scholar 

  17. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. London. Ser. A. Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)

    Google Scholar 

  18. Kadian, K., Garhwal, S., Kumar, A.: Quantum walk and its application domains: a systematic review. Comput. Sci. Rev. 41, 100419 (2021)

    Article  MathSciNet  Google Scholar 

  19. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)

    Article  MathSciNet  Google Scholar 

  20. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New York (2012)

    MATH  Google Scholar 

  21. Minello, G., Rossi, L., Torsello, A.: Can a quantum walk tell which is which? a study of quantum walk-based graph similarity. Entropy 21(3), 328 (2019)

    Article  MathSciNet  Google Scholar 

  22. Montanaro, A.: Quantum walks on directed graphs. Quantum Inf. Comput. 7(1), 93–102 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  24. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information (2002)

    Google Scholar 

  25. Christos, H.: Papadimitriou. Computational complexity, Pearson, New York (1993)

    Google Scholar 

  26. Paparo, G.D., Martin-Delgado, M.A.: Google in a quantum network. Sci. Rep. 2(1), 1–12 (2012)

    Article  Google Scholar 

  27. Qiu, D., Zheng, S.: Revisiting deutsch-jozsa algorithm. Inf. Comput. 275, 104605 (2020)

    Article  MathSciNet  Google Scholar 

  28. Severini, S.: On the digraph of a unitary matrix. SIAM J. Matrix Anal. Appl. 25(1), 295–300 (2003)

    Article  MathSciNet  Google Scholar 

  29. Tanenbaum, A.S., Wetherall, D.: Computer networks, 5th Edition. Pearson, New York (2011)

    Google Scholar 

  30. Salvador Elias Venegas-Andraca: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  Google Scholar 

  31. Xia, F., Liu, J., Nie, H., Yonghao, F., Wan, L., Kong, X.: Random walks: a review of algorithms and applications. IEEE Trans. Emerg. Top. Comput. Intell. 4(2), 95–107 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Romanello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Della Giustina, D., Piazza, C., Riccardi, B., Romanello, R. (2022). Directed Graph Encoding in Quantum Computing Supporting Edge-Failures. In: Mezzina, C.A., Podlaski, K. (eds) Reversible Computation. RC 2022. Lecture Notes in Computer Science, vol 13354. Springer, Cham. https://doi.org/10.1007/978-3-031-09005-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09005-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09004-2

  • Online ISBN: 978-3-031-09005-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics