Skip to main content

Deep Neural Networks and Smooth Approximation of PDEs

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

We focus on Isogeometric Analysis (IGA) approximations of Partial Differential Equations (PDEs) solutions. We consider linear combinations of high-order and continuity base functions utilized by IGA. Instead of using the Deep Neural Network (DNN), which is the concatenation of linear operators and activation functions, to approximate the solutions of PDEs, we employ the linear combination of higher-order and continuity base functions, as employed by IGA. In this paper, we compare two methods. The first method trains different DNN for each coefficient of the linear computations. The second method trains one DNN for all coefficients of the linear combination. We show on model L-shape domain problem that training several small DNNs learning how to span B-splines coefficients is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Towards Unification of Computer Aided Design and Finite Element Analysis. John Wiley and Sons, Hoboken (2009)

    Book  Google Scholar 

  2. Maziar, R., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  3. Léon, B.: Online Algorithms and Stochastic Approximations, Online Learning and Neural Networks. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  4. Doległo, K., Paszyńska, A., Paszyński, M., Demkowicz, L.: Deep neural networks for smooth approximation of physics with higher order and continuity B-spline base functions, pp. 1–44 (2022) arXiv:2201.00904

  5. Wang, Y., Ni, Y.H.: Deep BSDE-ML learning and its application to model-free optimal control, pp. 1–20 (2022) arxiv:2201.01318

Download references

Acknowledgement

The European Union’s Horizon 2020 Research and Innovation Program of the Marie Skłodowska-Curie grant agreement No. 777778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Paszyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doległo, K., Paszyński, M., Demkowicz, L. (2022). Deep Neural Networks and Smooth Approximation of PDEs. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics