Skip to main content

Emerging Non-invasive Markers: Imaging, Blood, and Liver Clearance Tests

  • Conference paper
  • First Online:
  • 667 Accesses

Abstract

A variety of imaging and blood-based biomarkers continue to be evaluated for the diagnosis and monitoring of portal hypertension (PH). Notable progress has been made since Baveno VI, especially in the non-invasive detection of clinically significant portal hypertension (CSPH). However, no surrogate measure of portal pressure response has been sufficiently validated to replace repeated measurement of the hepatic venous pressure gradient (HVPG) as the (invasive) gold standard. In the following chapter, we summarise progress in the development of non-invasive modalities for the assessment of PH, other than ultrasound elastography which is discussed in detail in the previous chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kim G, Shim KY, Baik SK. Diagnostic accuracy of hepatic vein arrival time performed with contrast-enhanced ultrasonography for cirrhosis: a systematic review and meta-analysis. Gut Liver. 2017;11(1):93–101.

    Article  PubMed  Google Scholar 

  2. Shimada T, et al. Impact of splenic circulation: non-invasive microbubble-based assessment of portal hemodynamics. Eur Radiol. 2015;25(3):812–20.

    Article  PubMed  Google Scholar 

  3. Halldorsdottir VG, et al. Subharmonic contrast microbubble signals for noninvasive pressure estimation under static and dynamic flow conditions. Ultrason Imaging. 2011;33(3):153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eisenbrey JR, et al. Chronic liver disease: noninvasive subharmonic aided pressure estimation of hepatic venous pressure gradient. Radiology. 2013;268(2):581–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gupta I, et al. Diagnosing portal hypertension with noninvasive subharmonic pressure estimates from a US contrast agent. Radiology. 2021;298(1):104–11.

    Article  PubMed  Google Scholar 

  6. Amat-Roldan I, et al. Assessment of hepatic vascular network connectivity with automated graph analysis of dynamic contrast-enhanced US to evaluate portal hypertension in patients with cirrhosis: a pilot study. Radiology. 2015;277(1):268–76.

    Article  PubMed  Google Scholar 

  7. Berzigotti A, et al. Non-invasive measurement of HVPG using graph analysis of dynamic contrast-enhanced ultrasound: the CLEVER study. J Hepatol. 2018;68:S76–7.

    Article  Google Scholar 

  8. Iranmanesh P, et al. Accurate computed tomography-based portal pressure assessment in patients with hepatocellular carcinoma. J Hepatol. 2014;60(5):969–74.

    Article  PubMed  Google Scholar 

  9. Qi X, et al. Virtual portal pressure from anatomic CT angiography. J Hepatol. 2014;61(1):180–1.

    Article  PubMed  Google Scholar 

  10. Qi X, et al. Insufficient accuracy of computed tomography-based portal pressure assessment in hepatitis B virus-related cirrhosis: an analysis of data from CHESS-1601 trial. J Hepatol. 2018;68(1):210–1.

    Article  Google Scholar 

  11. Lu MT, et al. Noninvasive FFR derived from coronary CT angiography management and outcomes in the PROMISE trial. JACC Cardiovasc Imaging. 2017;10(11):1350–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qi XL, et al. Virtual hepatic venous pressure gradient with CT angiography (CHESS 1601): a prospective multicenter study for the noninvasive diagnosis of portal hypertension. Radiology. 2019;290(2):370–7.

    Article  PubMed  Google Scholar 

  13. Liu FQ, et al. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis (CHESS1701): a prospective multicenter study. EBioMedicine. 2018;36:151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Andreucci M, et al. Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc Patient Saf. 2017;9:25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burkart DJ, et al. Volumetric flow-rates in the portal venous system—measurement with cine phase-contrast Mr imaging. Am J Roentgenol. 1993;160(5):1113–8.

    Article  CAS  Google Scholar 

  16. Gouya H, et al. Chronic liver disease: systemic and splanchnic venous flow mapping with optimized cine phase-contrast MR imaging validated in a phantom model and prospectively evaluated in patients. Radiology. 2011;261(1):144–55.

    Article  PubMed  Google Scholar 

  17. Pelc LR, et al. Arterial and venous-blood flow—noninvasive quantitation with Mr imaging. Radiology. 1992;185(3):809–12.

    Article  CAS  PubMed  Google Scholar 

  18. Gouya H, et al. Portal hypertension in patients with cirrhosis: indirect assessment of hepatic venous pressure gradient by measuring azygos flow with 2D-cine phase-contrast magnetic resonance imaging. Eur Radiol. 2016;26(7):1981–90.

    Article  PubMed  Google Scholar 

  19. Palaniyappan N, et al. Non-invasive assessment of portal hypertension using quantitative magnetic resonance imaging. J Hepatol. 2016;65(6):1131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chouhan MD, et al. Caval subtraction 2D phase-contrast MRI to measure Total liver and hepatic arterial blood flow proof-of-principle, correlation with portal hypertension severity and validation in patients with chronic liver disease. Investig Radiol. 2017;52(3):170–6.

    Article  Google Scholar 

  21. Odudu A, et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant. 2018;33(Suppl 2):ii15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moon JC, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR working Group of the European Society of cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Banerjee R, et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol. 2014;60(1):69–77.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoad CL, et al. A study of T1 relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed. 2015;28(6):706–14.

    Article  CAS  PubMed  Google Scholar 

  25. Levick C, et al. Non-invasive assessment of portal hypertension by multi-parametric magnetic resonance imaging of the spleen: a proof of concept study. PLoS One. 2019;14(8):e0221066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mozes FE, et al. Influence of fat on liver T1 measurements using modified look-locker inversion recovery (MOLLI) methods at 3T. J Magn Reson Imaging. 2016;44(1):105–11.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kihira S, et al. Non-invasive prediction of portal pressures using CT and MRI in chronic liver disease. Abdom Radiol (NY). 2016;41(1):42–9.

    Article  Google Scholar 

  28. Pandharipande PV, et al. Perfusion imaging of the liver: current challenges and future goals. Radiology. 2005;234(3):661–73.

    Article  PubMed  Google Scholar 

  29. Materne R, et al. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med. 2002;47(1):135–42.

    Article  CAS  PubMed  Google Scholar 

  30. Annet L, et al. Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology. 2003;229(2):409–14.

    Article  PubMed  Google Scholar 

  31. Wagner M, et al. Noninvasive prediction of portal pressure with MR Elastography and DCE-MRI of the liver and spleen: preliminary results. J Magn Reson Imaging. 2018;48(4):1091–103.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thomsen HS, Marckmann P, Logager VB. Update on nephrogenic systemic fibrosis. Magn Reson Imaging Clin N Am. 2008;16(4):551–60.

    Article  PubMed  Google Scholar 

  33. Selvaraj EA, et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: a systematic review and meta-analysis. J Hepatol. 2021;75(4):770–85.

    Article  PubMed  Google Scholar 

  34. Singh R, et al. Accuracy of liver and spleen stiffness on magnetic resonance elastography for detecting portal hypertension: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2021;32(2):237–45.

    Article  PubMed  Google Scholar 

  35. Ronot M, et al. Assessment of portal hypertension and high-risk oesophageal varices with liver and spleen three-dimensional multifrequency MR elastography in liver cirrhosis. Eur Radiol. 2014;24(6):1394–402.

    PubMed  Google Scholar 

  36. Gharib AM, et al. Magnetic resonance Elastography shear wave velocity correlates with liver fibrosis and hepatic venous pressure gradient in adults with advanced liver disease. Biomed Res Int. 2017;2017:2067479.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Danielsen KV, et al. Using MR elastography to assess portal hypertension and response to beta-blockers in patients with cirrhosis. Liver Int. 2021;41(9):2149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guha IN, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European liver fibrosis panel and exploring simple markers. Hepatology. 2008;47(2):455–60.

    Article  PubMed  Google Scholar 

  39. Johnson PJ, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33(6):550–8.

    Article  PubMed  Google Scholar 

  40. Hsieh YC, et al. Correlation and prognostic accuracy between noninvasive liver fibrosismarkers and portal pressure in cirrhosis: role of ALBI score. PLoS One. 2018;13(12):e0208903.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guha IN, et al. Validation of a model for identification of patients with compensated cirrhosis at high risk of decompensation. Clin Gastroenterol Hepatol. 2019;17(11):2330–2338.e1.

    Article  PubMed  Google Scholar 

  42. Grønbaek H, et al. Soluble CD163, a marker of Kupffer cell activation, is related to portal hypertension in patients with liver cirrhosis. Aliment Pharmacol Ther. 2012;36(2):173–80.

    Article  PubMed  Google Scholar 

  43. Sandahl TD, et al. The macrophage activation marker sCD163 combined with markers of the enhanced liver fibrosis (ELF) score predicts clinically significant portal hypertension in patients with cirrhosis. Aliment Pharmacol Ther. 2016;43(11):1222–31.

    Article  CAS  PubMed  Google Scholar 

  44. Zou Z, et al. von Willebrand factor as a biomarker of clinically significant portal hypertension and severe portal hypertension: a systematic review and meta-analysis. BMJ Open. 2019;9(8):e025656.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mandorfer M, et al. Von Willebrand factor indicates bacterial translocation, inflammation, and procoagulant imbalance and predicts complications independently of portal hypertension severity. Aliment Pharmacol Ther. 2018;47(7):980–8.

    Article  CAS  PubMed  Google Scholar 

  46. Maieron A, et al. Von Willebrand factor as a new marker for non-invasive assessment of liver fibrosis and cirrhosis in patients with chronic hepatitis C. Aliment Pharmacol Ther. 2014;39(3):331–8.

    Article  CAS  PubMed  Google Scholar 

  47. Mandorfer M, et al. Changes in hepatic venous pressure gradient predict hepatic Decompensation in patients who achieved sustained Virologic response to interferon-free therapy. Hepatology. 2020;71(3):1023–36.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou H, et al. Liver stiffness and serum markers for excluding high-risk varices in patients who do not meet Baveno VI criteria. World J Gastroenterol. 2019;25(35):5323–33.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cho EJ, et al. Diagnostic and prognostic values of noninvasive predictors of portal hypertension in patients with alcoholic cirrhosis. PLoS One. 2015;10(7):e0133935.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lisotti A, et al. Indocyanine green retention test as a noninvasive marker of portal hypertension and esophageal Varices in compensated liver cirrhosis. Hepatology. 2014;59(2):643–50.

    Article  CAS  PubMed  Google Scholar 

  51. Sebastiani G, et al. Prediction of oesophageal varices in hepatic cirrhosis by simple serum non-invasive markers: results of a multicenter, large-scale study. J Hepatol. 2010;53(4):630–8.

    Article  PubMed  Google Scholar 

  52. Wang L, et al. Diagnostic efficacy of noninvasive liver fibrosis indexes in predicting portal hypertension in patients with cirrhosis. PLoS One. 2017;12(8):e0182969.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hassan EM, et al. Can transient elastography, Fib-4, Forns index, and Lok score predict esophageal varices in HCV-related cirrhotic patients? Gastroenterol Hepatol. 2014;37(2):58–65.

    Article  PubMed  Google Scholar 

  54. Stefanescu H, et al. A new and simple algorithm for the noninvasive assessment of esophageal varices in cirrhotic patients using serum fibrosis markers and transient elastography. J Gastrointestin Liver Dis. 2011;20(1):57–64.

    PubMed  Google Scholar 

  55. Farid K, et al. Development and evaluation of a novel score for prediction of large oesophageal varices in patients with hepatitis c virus-induced liver cirrhosis. Br J Biomed Sci. 2017;74(3):138–43.

    Article  CAS  PubMed  Google Scholar 

  56. Alam L, Saeed F. Non-invasive tools to assess the risk of varices-needing-treatment in cirrhosis secondary to HCV. PAFMJ. 2021;71:12–7.

    Article  Google Scholar 

  57. Siregar RA, Dairi LB, Siregar GA. Forns index as a useful noninvasive predictor of esophageal varices in liver cirrhosis. Universa Medicina. 2016;35(3):199–205.

    Article  Google Scholar 

  58. Hametner S, et al. The VITRO score (Von Willebrand factor antigen/thrombocyte ratio) as a new marker for clinically significant portal hypertension in comparison to other non-invasive parameters of fibrosis including ELF test. PLoS One. 2016;11(2):e0149230.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mauro E, et al. Portal pressure and liver stiffness measurements in the prediction of fibrosis regression after sustained virological response in recurrent hepatitis C. Hepatology. 2018;67(5):1683–94.

    Article  PubMed  Google Scholar 

  60. Frankova S, et al. Liver stiffness measured by two-dimensional shear-wave elastography predicts hepatic vein pressure gradient at high values in liver transplant candidates with advanced liver cirrhosis. PLoS One. 2021;16(1):e0244934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishida K, et al. Accuracy of fibrosis-4 index in identification of patients with cirrhosis who could potentially avoid variceal screening endoscopy. J Clin Med. 2020;9(11):3510.

    Article  CAS  PubMed Central  Google Scholar 

  62. Simbrunner B, et al. Non-invasive detection of portal hypertension by enhanced liver fibrosis score in patients with different aetiologies of advanced chronic liver disease. Liver Int. 2020;40(7):1713–24.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Busk TM, et al. TIMP-1 in patients with cirrhosis: relation to liver dysfunction, portal hypertension, and hemodynamic changes. Scand J Gastroenterol. 2014;49(9):1103–10.

    Article  CAS  PubMed  Google Scholar 

  64. Thabut D, et al. Relationship between the Fibrotest and portal hypertension in patients with liver disease. Aliment Pharmacol Ther. 2007;26(3):359–68.

    Article  CAS  PubMed  Google Scholar 

  65. Thabut D, et al. Non-invasive diagnosis of large oesophageal varices with FibroTest in patients with cirrhosis: a preliminary retrospective study. Liver Int. 2006;26(3):271–8.

    Article  PubMed  Google Scholar 

  66. Leeming DJ, et al. Pro-C5, a marker of true type V collagen formation and fibrillation, correlates with portal hypertension in patients with alcoholic cirrhosis. Scand J Gastroenterol. 2015;50(5):584–92.

    Article  PubMed  Google Scholar 

  67. Jansen C, et al. PRO-C3-levels in patients with HIV/HCV-co-infection reflect fibrosis stage and degree of portal hypertension. PLoS One. 2014;9(9):e108544.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bruha R, et al. Osteopontin: a non-invasive parameter of portal hypertension and prognostic marker of cirrhosis. World J Gastroenterol. 2016;22(12):3441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Holland-Fischer P, et al. Kupffer cells are activated in cirrhotic portal hypertension and not normalised by TIPS. Gut. 2011;60(10):1389–93.

    Article  CAS  PubMed  Google Scholar 

  70. La Mura V, et al. Von Willebrand factor levels predict clinical outcome in patients with cirrhosis and portal hypertension. Gut. 2011;60(8):1133–8.

    Article  PubMed  Google Scholar 

  71. Ferlitsch M, et al. von Willebrand factor as new noninvasive predictor of portal hypertension, decompensation and mortality in patients with liver cirrhosis. Hepatology. 2012;56(4):1439–47.

    Article  CAS  PubMed  Google Scholar 

  72. Horvatits T, et al. von Willebrand factor antigen for detection of hepatopulmonary syndrome in patients with cirrhosis. J Hepatol. 2014;61(3):544–9.

    Article  CAS  PubMed  Google Scholar 

  73. Wu H, et al. von Willebrand factor as a novel noninvasive predictor of portal hypertension and esophageal varices in hepatitis B patients with cirrhosis. Scand J Gastroenterol. 2015;50(9):1160–9.

    Article  CAS  PubMed  Google Scholar 

  74. Lisotti A, et al. Relationship between indocyanine green retention test, decompensation and survival in patients with child-Pugh a cirrhosis and portal hypertension. Liver Int. 2016;36(9):1313–21.

    Article  CAS  PubMed  Google Scholar 

  75. Møller S, et al. Indocyanine green retention test in cirrhosis and portal hypertension: accuracy and relation to severity of disease. J Gastroenterol Hepatol. 2019;34(6):1093–9.

    Article  PubMed  Google Scholar 

  76. Helmke SM, et al. Portal-systemic Shunt fraction measured by the HepQuant-SHUNT test correlates with the hepatic venous pressure gradient (HVPG). Hepatology. 2017;66:348A.

    Google Scholar 

  77. Fallahzadeh MA, et al. Predicting clinical decompensation in patients with cirrhosis using the Hepquant-SHUNT test. Aliment Pharmacol Ther. 2021;53(8):928–38.

    PubMed  Google Scholar 

  78. Ilan Y, et al. 13C-Methacetin breath test accurately assesses clinically significant portal hypertension in patients with NASH cirrhosis. J Hepatol. 2017;66(1):S100.

    Article  Google Scholar 

  79. Garcia-Tsao G, et al. Short-term effects of propranolol on portal venous pressure. Hepatology. 1986;6(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  80. Heebøll S, et al. Propranolol treatment of portal hypertension in cirrhosis patients is better the higher the untreated pressure: a single-Centre prospective experience. Scand J Gastroenterol. 2013;48(8):969–73.

    Article  PubMed  Google Scholar 

  81. Bai W, et al. Test-retest reliability and consistency of HVPG and impact on trial design: a study in 289 patients from 20 randomized controlled trials. Hepatology. 2021;74(6):3301–15.

    Article  PubMed  Google Scholar 

  82. Baik SK, et al. Recent variceal bleeding: Doppler US hepatic vein waveform in assessment of severity of portal hypertension and vasoactive drug response. Radiology. 2006;240(2):574–80.

    Article  PubMed  Google Scholar 

  83. Kim MY, et al. Damping index of Doppler hepatic vein waveform to assess the severity of portal hypertension and response to propranolol in liver cirrhosis: a prospective nonrandomized study. Liver Int. 2007;27(8):1103–10.

    Article  PubMed  Google Scholar 

  84. Choi YJ, et al. Comparison of Doppler ultrasonography and the hepatic venous pressure gradient in assessing portal hypertension in liver cirrhosis. J Gastroenterol Hepatol. 2003;18(4):424–9.

    Article  PubMed  Google Scholar 

  85. McDonald N, et al. Assessment of Haemodynamic response to nonselective Beta-blockers in portal hypertension by phase-contrast magnetic resonance angiography. Biomed Res Int, vol. 2017; 2017. p. 9281450.

    Google Scholar 

  86. Trebicka J, et al. Assessment of response to beta-blockers by expression of beta Arr2 and RhoA/ROCK2 in antrum mucosa in cirrhotic patients. J Hepatol. 2016;64(6):1265–73.

    Article  CAS  PubMed  Google Scholar 

  87. Reverter E, et al. Metabolomics discloses potential biomarkers to predict the acute HVPG response to propranolol in patients with cirrhosis. Liver Int. 2019;39(4):705–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Fallowfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palaniyappan, N., Fallowfield, J.A. (2022). Emerging Non-invasive Markers: Imaging, Blood, and Liver Clearance Tests. In: de Franchis, R. (eds) Portal Hypertension VII. Springer, Cham. https://doi.org/10.1007/978-3-031-08552-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08552-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08551-2

  • Online ISBN: 978-3-031-08552-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics