Skip to main content

Energy Load Forecasting: Investigating Mid-Term Predictions with Ensemble Learners

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2022)

Abstract

In the structure of the modern world, energy and especially electricity is a prerequisite for regularity. Thus, the requirement for accurate forecasts regarding power system loads seems self-evident. In machine learning, a time series forecasting endeavor can be treated as a regression problem. In such scenarios, ensemble methods are often used for robustness and increased accuracy of the generated predictions. This work is a comparative investigation of the use of ensemble schemes for medium-term forecasting of energy system load. The use of over 300 regression schemes is investigated, in a total of 8 different modifications of the input data, over 5 different time-frames, that is, one day, 7-day, 14-day, 21-day, and 30-day horizons, resulting in a loop of 12000 experiments. Summary tables with representative results from the corresponding Friedman rankings are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianchi, F.M., De Santis, E., Rizzi, A., Sadeghian, A.: Short-term electric load forecasting using echo state networks and PCA decomposition. IEEE Access. 3, 1931–1943 (2015). https://doi.org/10.1109/ACCESS.2015.2485943

    Article  Google Scholar 

  2. Zhang, J.: Research on power load forecasting based on the improved Elman neural network. Chem. Eng. Trans. 51, 589–594 (2016). https://doi.org/10.3303/CET1651099

    Article  Google Scholar 

  3. Filatova, E.S., Filatov, D.M., Stotckaia, A.D., Dubrovskiy, G.: Time series dynamics representation model of power consumption in electric load forecasting system. In: Proceedings of the 2015 North West Russia Section Young Researchers in Electrical and Electronic Engineering Conference ElConRusNW 2015, pp. 175–179 (2015). https://doi.org/10.1109/EIConRusNW.2015.7102256

  4. Khamaira, M.Y., Krzma, A.S., Alnass, A.M.: Long term peak load forecasting for the Libyan Network. In: First Conference for Engineering Sciences and Technology (CEST-2018), pp. 185–193 (2018). https://doi.org/10.21467/proceedings.2.23

  5. Saber, A.Y., Alam, A.K.M.R.: Short term load forecasting using multiple linear regression for big data. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Janua, pp. 1–6 (2018). https://doi.org/10.1109/SSCI.2017.8285261

  6. Clarke, S.M., Griebsch, J.H., Simpson, T.W.: Analysis of support vector regression for approximation of complex engineering analyses. J. Mech. Des. Trans. ASME. 127, 1077–1087 (2005). https://doi.org/10.1115/1.1897403

    Article  Google Scholar 

  7. Azad, M.K., Uddin, S., Takruri, M.: Support vector regression based electricity peak load forecasting. 11th International Symposium on Mechatronics and its Applications, ISMA 2018. January 2018, pp. 1–5 (2018). https://doi.org/10.1109/ISMA.2018.8330143

  8. Ghelardoni, L., Ghio, A., Anguita, D.: Energy load forecasting using empirical mode decomposition and support vector regression. IEEE Trans. Smart Grid. 4, 549–556 (2013). https://doi.org/10.1109/TSG.2012.2235089

    Article  Google Scholar 

  9. Maldonado, S., González, A., Crone, S.: Automatic time series analysis for electric load forecasting via support vector regression. Appl. Soft Comput. J. 83, 105616 (2019). https://doi.org/10.1016/j.asoc.2019.105616

  10. Sehovac, L., Grolinger, K.: Deep learning for load forecasting: sequence to sequence recurrent neural networks with attention. IEEE Access. 8, 36411–36426 (2020). https://doi.org/10.1109/ACCESS.2020.2975738

    Article  Google Scholar 

  11. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting. Energies. 3, 1–21 (2020)

    Google Scholar 

  12. Din, G.M.U., Marnerides, A.K.: Short term power load forecasting using Deep Neural Networks. 2017 26th International Conference on Networks Communication, ICNC 2017, pp. 594–598 (2017). https://doi.org/10.1109/ICCNC.2017.7876196

  13. Ryu, S., Noh, J., Kim, H.: Deep neural network based demand side short term load forecasting. Energies. 10, 1–20 (2017). https://doi.org/10.3390/en10010003

    Article  Google Scholar 

  14. He, W.: Load forecasting via deep neural networks. Procedia Comput. Sci. 122, 308–314 (2017). https://doi.org/10.1016/j.procs.2017.11.374

    Article  Google Scholar 

  15. Kumar, S., Hussain, L., Banarjee, S., Reza, M.: Energy load forecasting using deep learning approach-LSTM and GRU in spark cluster. In: Proceedings of 5th International Conference on Emerging Applications of Information Technology, EAIT 2018, pp. 1–4 (2018). https://doi.org/10.1109/EAIT.2018.8470406

  16. Mubashar, R., Javed Awan, M., Ahsan, M., Yasin, A., Partab Singh, V.: Efficient residential load forecasting using deep learning approach. Int. J. Comput. Appl, Technol (2021)

    Google Scholar 

  17. Almalaq, A., Edwards, G.: A review of deep learning methods applied on load forecasting. In: Proceedings of the 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, pp. 511–516, December, 2017. https://doi.org/10.1109/ICMLA.2017.0-110

  18. Aslam, S., Herodotou, H., Mohsin, S.M., Javaid, N., Ashraf, N., Aslam, S.: A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 144, 110992 (2021). https://doi.org/10.1016/j.rser.2021.110992

  19. Hammad, M.A., Jereb, B., Rosi, B., Dragan, D.: Methods and models for electric load forecasting: a comprehensive review. Logist. Sustain. Transp. 11, 51–76 (2020). https://doi.org/10.2478/jlst-2020-0004

  20. Shabbir, N., Ahmadiahangar, R., Kutt, L., Rosin, A.: Comparison of machine learning based methods for residential load forecasting. In: 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics, PQ SEEM 2019, pp. 1–4 (2019). https://doi.org/10.1109/PQ.2019.8818267

  21. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. Energies 11 (2018). https://doi.org/10.3390/en11071636

  22. Dudek, G.: Neural networks for pattern-based short-term load forecasting: a comparative study. Neurocomputing. 205, 64–74 (2016). https://doi.org/10.1016/j.neucom.2016.04.021

  23. García-pedrajas, N., Hervás-Martínez, C., Ortiz-boyer, D.: Cooperative Coevolution of Artificial Neural Network Ensembles for Pattern Classification. IEEE Trans. Neural Netw. Publ. IEEE Neural Netw. Councilt. 9, 271–302 (2005)

    Google Scholar 

  24. Cuncheva, L., Whitaker, C.: Measures of diversity in classifier ensembles. Mach. Learn. 51, 181–207 (2003). https://doi.org/10.1049/ic:20010105

  25. Chandra, A., Chen, H., Yao, X.: Trade-off between diversity and accuracy in ensemble generation. In: Jin, Y. (eds.) Multi-Objective Machine Learning. Studies in Computational Intelligence, vol 16, pp. 429–464. Springer, Heidelberg (2019). https://doi.org/10.1007/3-540-33019-4_19

  26. Tumer, K., Ghosh, J.: Analysis on decision boundaries in linearly combined neural classifiers. Pattern Recognit. 29, 341–348 (1996)

    Google Scholar 

  27. Liapis, C.M., Karanikola, A., Kotsiantis, S.: An ensemble forecasting method using univariate time series COVID-19 data. In: ACM International Conference Proceeding, vol. S, pp. 50–52 (2020). https://doi.org/10.1145/3437120.3437273

  28. Nti, I.K., Adekoya, A.F., Weyori, B.A.: A comprehensive evaluation of ensemble learning for stock-market prediction. J. Big Data 7(1), 1–40 (2020). https://doi.org/10.1186/s40537-020-00299-5

  29. Kankanala, P., Member, S., Das, S., Pahwa, A.: ADABOOST+: an ensemble learning approach for estimating weather-related outages in distribution systems. IEEE Trans. Power Syst. 29, 359–367 (2014)

    Google Scholar 

  30. Mendes-Moreira, J., Soares, C., Alipio, M.J., De Sousa, J.F.: Ensemble approaches for regression: a survey. ACM Comput. Surv. 45, (2012). https://doi.org/10.1145/2379776.2379786

  31. Wang, L., Mao, S., Wilamowski, B.M., Nelms, R.M.: Ensemble learning for load forecasting. IEEE Trans. Green Commun. Netw. 4, 616–628 (2020). https://doi.org/10.1109/TGCN.2020.2987304

  32. Tang, L., Yi, Y., Peng, Y.: An ensemble deep learning model for short-term load forecasting based on ARIMA and LSTM. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2019, pp. 1–6 (2019). https://doi.org/10.1109/SmartGridComm.2019.8909756

  33. Li, J., et al.: A novel hybrid short-term load forecasting method of smart grid using MLR and LSTM neural network. IEEE Trans. Ind. Informat. 17, 2443–2452 (2021). https://doi.org/10.1109/TII.2020.3000184

  34. Li, Y., Che, J., Yang, Y.: Subsampled support vector regression ensemble for short term electric load forecasting. Energy. 164, 160–170 (2018). https://doi.org/10.1016/j.energy.2018.08.169

  35. Von Krannichfeldt, L., Wang, Y., Hug, G.: Online ensemble learning for load forecasting. IEEE Trans. Power Syst. 36, 545–548 (2021). https://doi.org/10.1109/TPWRS.2020.3036230

  36. Dudek, G.: Short-term load forecasting using random forests. Adv. Intell. Syst. Comput. 323, 821–828 (2015). https://doi.org/10.1007/978-3-319-11310-4_71

  37. Papadopoulos, S., Karakatsanis, I.: Short-term electricity load forecasting using time series and ensemble learning methods. In: 2015 IEEE Power Energy Conference Illinois, PECI 2015. 1–6 (2015). https://doi.org/10.1109/PECI.2015.7064913

  38. IPTT Energy System Load. https://www.data.gov.gr/datasets/admie_realtimescadasystemload/

  39. Drucker, H.: Improving regressors using boosting techniques. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 107–115 (1997)

    Google Scholar 

  40. Wipf, D., Nagarajan, S.: A new view of automatic relevance determination. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems. Curran Associates, Inc., Red Hook(2008)

    Google Scholar 

  41. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost: unbiased boosting with categorical features arXiv: 1706. 09516v5 [cs. LG], 1–23. 20 Jan 2019

  42. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression trees. Routledge, New York (2017)

    Google Scholar 

  43. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005). https://doi.org/10.1111/j.1467-9868.2005.00503.x

  44. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42(2006). https://doi.org/10.1007/s10994-006-6226-1

  45. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al.: Xgboost: extreme gradient boosting. R Packag. version 0.4-2. 1, 1–4 (2015)

    Google Scholar 

  46. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

  47. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence functions. John Wiley & Sons, New York (2011)

    Google Scholar 

  48. Devroye, L., Gyorfi, L., Krzyzak, A., Lugosi, G.: On the strong universal consistency of nearest neighbor regression function estimates. Ann. Stat. 22, (2007). https://doi.org/10.1214/aos/1176325633

  49. Vovk, V.: Kernel Ridge Regression. In: Schölkopf, B., Luo, Z., Vovk, V. (eds.) Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, pp. 105–116. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-41136-6

  50. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004). https://doi.org/10.1214/009053604000000067

  51. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B. 58, 267–288 (1996). https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

  52. Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., Zeng, W.: Light gradient boosting machine: an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manag. 225, 105758 (2019). https://doi.org/10.1016/j.agwat.2019.105758

  53. Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. John Wiley & Sons, New York (2012)

    Google Scholar 

  54. Murtagh, F.: Multilayer perceptrons for classification and regression. Neurocomputing 2, 183–197 (1991). https://doi.org/10.1016/0925-2312(91)90023-5

  55. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Tech. 1–15 (2008)

    Google Scholar 

  56. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

    Google Scholar 

  57. Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1017/CBO9781107415324.004

  58. Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Proceedings of the British Machine Vision Conference, BMVC 2009, 7–10 September 2009, pp. 1–12 (2009)

    Google Scholar 

  59. Marquardt, D.W., Snee, R.D.: Ridge regression in practice. Am. Stat. 29, 3–20 (1975). https://doi.org/10.1080/00031305.1975.10479105

  60. Smola, A. j., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Google Scholar 

  61. Dang, X., Peng, H., Wang, X., Zhang, H.: The Theil-Sen Estimators in a Multiple Linear Regression Model. Manuscript, pp. 1–30 (2009)

    Google Scholar 

  62. Ali, M.: PyCaret: An open source, low-code machine learning library in Python. https://pycaret.org/

  63. Liapis, C.M., Karanikola, A., Kotsiantis, S.: A multi-method survey on the use of sentiment analysis in multivariate financial time series forecasting. Entropy. 23, 1603 (2021)

    Google Scholar 

  64. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937). https://doi.org/10.1080/01621459.1937.10503522

  65. Dunn, O.J.: Multiple Comparisons Among Means. J. Am. Stat. Assoc. 56, 52 (1961). https://doi.org/10.2307/2282330

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos M. Liapis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liapis, C.M., Karanikola, A., Kotsiantis, S. (2022). Energy Load Forecasting: Investigating Mid-Term Predictions with Ensemble Learners. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-08333-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08333-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08332-7

  • Online ISBN: 978-3-031-08333-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics